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A financial example

We consider a market with n assets:

Sf = price of asset i, hi = units of asset ¢ in portfolio, wz = portfolio weight on asset 1.

Portfolio value and consumption:

LA L i
X = ZhiSﬁ, ¢ = consumption rate, Zw§ =1, w= ;(tt.
i=1 =1
Self-financing dynamics (in relative weights):
" :
. dS?
dX; = X, Zw; Stit —cp dt
i=1
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Simplest model

One risky asset and a money market account:
dSt = OéSt dt + O'St th, dBt = TBt dt.

We maximize discounted utility of consumption:

max E

T
F(t, Xy, c0) dt + (X
{w?},{wtl},{cf,} /0 ( ¢ t) ( T)

Wealth dynamics with portfolio weights w?, w} (w) +w} = 1):

dXy = X¢(w) r +wy a)dt — ¢, dt + w} o Xy dW;.
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Problem formulation
We consider the stochastic control problem

max [E
{utto<i<r

T
/F(t,Xhut)dt—k o(X7)
0 ~——

terminal reward

running reward/penalty
subject to the dynamics (continuous-time controlled SDE)
dXt = ,u(t, Xt,ut) dt + O'(LL,Xt, Ut) th, Xo = X,

with admissible controls u; € U(t, X;) for all t € [0, T]. We restrict attention to feedback

control laws of the form
uy = u(t, Xy).

Terminology: X = state variable, u = control variable, U = control constraint.

Note: No state space constraints.
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How do we solve this optimization problem?



Main idea

@ Embed the original problem in a family of problems indexed by (¢, ) (start time and

state).
@ Tie the family together via a PDE: the Hamilton—Jacobi—-Bellman (HJB) equation.

@ Reduce the stochastic control problem to solving this deterministic PDE.

For notational simplicity in the next slides we first assume X, W and u are scalar.
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Some notation

@ For any (feedback) control law u(-,-), write
u(t,x) == ,u(t,a:,u(t,a:)), o(t,x) = a(t,:c,u(t,a:)), FU(t,z) := F(t,x,u(t,x)).
@ For a control law u(-,-) the second-order operator £L* acting on a smooth f is
(LUf)(tx) = p(t,2) u f (£, 2) + & (0 (t, 7)) Dua f (£, ).
@ Under a control law u(-,-), the controlled state X* solves

dX; = p(t, X' u) dt + o (¢, X[ ug) AWy, up = u(t, X3').
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Embedding the problem

For each (¢, z), define problem P(¢,x): maximize

E’tw

)

T
/ F(s, X% us)ds + ®(X3) |,
t

subject to
dX: :,U,(S,X:7Us) dS+J(S7X:7uS) dWS, Xt =2,

with u(s,y) € U for all (s,y) € [t,T] x R".

Note: The original problem is P(0, zo).
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The optimal value function

Define the (controlled) performance for a law u by

J(t,z;u) =Ey

The optimal value function is

V(t,x) == sup J(t,x; u), (t,x) € [0,T] x R™.

ueU

We seek a PDE for V.
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Assumptions

We assume (for the derivation):
@ There exists an optimal feedback control .
@ The optimal value V is sufficiently regular: V € C1:2.

@ Interchange/limit steps used below are justified.
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The Bellman optimality principle

Dynamic programming relies heavily on the following basic result.

Proposition

If 4 is optimal on [t, T, then it is optimal on every subinterval [s, 7] with t < s < T.

Proof idea: Law of iterated expectations.
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Basic strategy to derive the PDE

For simplicity of notations, we demonstrate with = € R.
@ Fix (t,z) and a small h > 0.
@ Pick an arbitrary control law wu.
@ Define a new control u* by

U*(S y) — U(S,y), (Svy) € [t,t+ h] % R7
’ as,y), (s,y) € (t+h,T] xR,

That is, use u on [t,t + h] and then switch to the (unknown) optimal law @ for the
remainder.
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Basic idea

Consider two strategies on [t, T starting from (¢, x):
I: Use the optimal law @ throughout. Then J(t,z;4) = V (¢, x).

[lI: Use u* defined above. The total value is

J(t,zu") =E

By optimality, Strategy | is at least as good as Strategy II.
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Dynamic programming principle
Optimality gives

t+h
Vit,z) > Etml/ F(S,X:,us) ds+V(t+h, t‘fkh)],
t

for all u with equality if and only if u = (¢, x).
We also get the reverse inequality since

J(ta 5 U*) < sup Etw
ucU

t+h
/ F(S,X;t7us) ds + V(t+h, Zﬁrh)]
t

and hence the Dynamic Programming Principle (DPP):

t+h
V(t,z) = supE,;, [/ F(s, X! us)ds+ V(t+ h,Xt’j_h)]
uel t
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Comparing strategies

By Itd’s formula applied to V (s, X¥) on [t, ¢ + h],
t+h
V(4 h XE) = Vita) + / (v + £V (s, X2) ds
t
t+h
+/ 0.V (s, X¥)o"(s, X)) dWs.
t
Taking expectations and rearranging yields

Et,z

t+h
/ (F“ OV + E“V) (5, X ds] <o0.
t

Remark: We have equality above if and only if u = .
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Letting h — 0

Divide by h, move h inside the expectation, and let h | 0 to obtain the pointwise
inequality
F(t,z,u)+ 0 V(t,x) + (LV)(t,z) < 0, for all u,

with equality if and only if uw = 4(¢,z). Thus,

oV (t,x) + sup {F(t,z,u)+ (L"V)(t,z)} = 0.
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The HJB equation

Under suitable regularity assumptions:

@ V solves the Hamilton—Jacobi—Bellman PDE

oV (t,x) + o {F(t,z,u)+ (L*V)(t,z)} =0, V(T,z) = &(z).

@ For each (t,x), the supremum is attained at u = 4(t, ).
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Multi-dimensional generator and dynamics

For u € R* define

wo(t, ) = pt,x,u), o,(tx):=0c(t zu), Cutz):=0c.tx)o.(tz).

For smooth f and fixed u, the generator is

=1 zj:l

Under a control law w the state satisfies

AX{ = p(t, X u) dt + o (t, X u) AW, e = ult, X}).
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Logic and problem

We derived HJB as a necessary condition assuming V is the optimal value and sufficiently
smooth.

Question: If we solve the HJB PDE, have we found the optimal value and an optimal
control?

Answer: Yes — this is guaranteed by the Verification Theorem.
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The verification theorem

Suppose H (t,x) and g(t,x) satisfy

@ H is sufficiently integrable and solves

O H + suB{F(t,x, u)+ (LYH)(t,z)} =0, H(T,z) = ®(x).

@ For each (t,z) the supremum is attained at u = g(¢, x).
Then
Q V(t,x) = H(t,x) is the optimal value function, and

@ there exists an optimal control @ given by (¢, z) = g(¢, z).
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Handling the HJB equation

@ Start from the HJB for V.

@ For fixed (¢, ) solve the static maximization

Teari( {F(t, T, u) + (EuV) (t, SC)}»

treating ¢,z and the (unknown) V' and its derivatives as parameters.
© Denote the maximizer 4 = 4(t,x; V). This is the candidate optimal law.

@ Substitute @(t, z; V') back into HIB to obtain a PDE for V only:
OV + Fu(t,x) + (LYV)(t,x) =0, V(T,z) = ®(x).

@ Solve this PDE. Then set the feedback law to 4(t, z; V).
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Making an Ansatz

@ The HJB is generally nonlinear and hard; closed forms are rare.

@ In applications one often guesses a parametric form (Ansatz) for V' and identifies the
parameters from the PDE.

@ Heuristic: V' often inherits structure from ® and the running criterion F.

@ Many classical solved problems are crafted to be analytically tractable.
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Recall the simplest model

One risky asset and a money market account:
dSt = OéSt dt + O'St th, dBf = T'Bt dt.

We maximize discounted utility of consumption:

T
E / F(t,Xt,Ct) dt+(I)(XT)
0

max
{w?d {wi} {ee}

Wealth dynamics with portfolio weights w?, w} (w) + w} = 1):
dXy = Xy (w) r +wy a)dt — ¢, dt + wi o Xy dW,.

Issue: with no constraint on X; one can push wealth negative and obtain unbounded
utility by consuming arbitrarily large amounts.
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What are the problems?

@ Unbounded objective: consume “arbitrarily large” amounts.
@ Wealth X; can become negative; no prohibition in the naive setup.

@ Natural constraint X; > 0 is a state constraint and classical dynamic programming
does not allow it directly.

Good news: Dynamic Programming can be generalized to handle such problems.
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Generalized problem (with exit at the boundary)

Let D be a nice open subset of [0,7] x R™ and consider

max E[/ F(s, X% ug)ds + ‘I)(T,X;f):| ,
ueU 0

with controlled dynamics
dXt :u(t,Xt,ut) dt+a(t,Xt,ut) th, XO = Xy,
and stopping time (exit or terminal time)

T=inf{t>0:(t,X:) €D} NT.
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Generalized HJB

Under suitable regularity, the value function V solves

0V (t,x) + sup {F(t,x,u) + £“’V(t,x)} =0, (t,z)e D,
uclU
with boundary condition V (¢, z) = ¢(t, ) for (t,z) € D, where
LYY = pt,z,u) 0,V + %0’2(15,.%, ) Oga V.

A standard verification theorem applies.
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Applications in trading problems



Reformulated consumption—investment problem

Exit when wealth hits zero:

max E{/ F(t,c)dt + O(X,) |, T=inf{t >0: X; =0} AT,
0

ct >0, wieR

with notation w} = wy, w) =1 — w; and dynamics

| X, =wi(a = )X, dt + (X, — &) dt + w0 Xy AW, |
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HJB equation

=

Take F(t,c) = e Pt .

(CRRA utility, v # 1). The HJB reads

1—v 1
oV + sup {e‘ﬂt ¢ +wz(a—r)Vy+ (re — o)V, + x2w2a2Vm} =0,
>0, weR 1—7v 2

with V(T,2) = 0 and V(¢,0) = 0.
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Solving the embedded static problem

First order conditions give (where V, = 0,V Vop = 052 V)

e—Bt \M7 Vo a—1 a-r
* =| ———= = h(t)" (¢ =——. = .
c*(t, x) (Vx(t,x)) (t) z, w*(t, z) V. o2 ~ o2
Motivated by homotheticity, use the ansatz
h(t) z' =7
V(t,z) = e Pt (1)7“" h(T) = 0.
-
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ODE for the scaling function h(t)

Plugging the ansatz and ¢*, w* into HJB yields the Bernoulli-type ODE

a—r)?
i) = [5- 1= (r+ G2 ) bl - 1=, ) =0
Thus
¢ =ht) VX, wy = 0;;2 (Merton proportion).

The ODE can be solved in closed form (Bernoulli equation).
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Observations

@ State constraints (e.g. X; > 0) can be handled via a generalized HJB with exit
times.

@ With CRRA utility and Black—Scholes returns:

a—T

wy = (constant in ¢ and x).

yo?

@ Optimal consumption is proportional to wealth: ¢} = m(t) X; with m(t) = h(t)~ /7
and h from a Bernoulli ODE.
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Limit order book

Bid side Ask side
Qe Qi

cancellation

Q?Sk

market order

QBid
1

mid price \ | |..........]

time

priority

........... |

P?)Bid PQBzd Pled M(t) PlAsk P2Ask P?.:lsk

!Picture credit: C. Lehalle, O. Mounjid, and M. Rosenbaum. Optimal liquidity-based trading

tactics. Stochastic Systems. 11(4), 2018.
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BTC/USDT ~

19,531.20 1853387  134,880,806.90 USDT

Order Book
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Market Making

@ Provide liquidity by posting bid/ask in the LOB and earn the spread.
@ Goal: while controlling inventory risk.

@ Classical approach: stochastic control = HJB for optimal quotes.
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A Canonical MM Model

Mid-price:  dS; = o dW;.
Quotes: post S?, S¢; define spreads 67 = S; — S?, 6% = S¢ — S,.

(]

Order arrivals (independent of W):

A (8) = A4(8) = Ae ™.

Inventory: q; = N} — Ng.

@ Cash:
dX, = (S, — 67) ANf — (S, — 6¢) dN}.

o CARA utility at T":

V(S7xaQDt) = {bupb} E[_eiv(X:,hHITST) | Xt:x; St:$7qt:q .
65,00
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Analytical limits & RL opportunity

@ HJB admits (semi) closed-form solutions only under strong assumptions (e.g.
CARA/CRRA/quadratic utility, specific dynamics).

@ Real markets =

@ Reinforcement learning for MM: (Q-learning, SARSA, deep policy gradients; states:
quotes/LOB features, inventory, volatility, order-flow; actions: spreads/quotes;
rewards: P&L with inventory penalties, etc.

@ Multi-agent RL to model competition and interaction effects.
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