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A financial example

We consider a market with n assets:

Si
t = price of asset i, hi

t = units of asset i in portfolio, wi
t = portfolio weight on asset i.

Portfolio value and consumption:

Xt =
n∑

i=1
hi

tS
i
t , ct = consumption rate,

n∑
i=1

wi
t = 1, wi

t = hi
tS

i
t

Xt
.

Self-financing dynamics (in relative weights):

dXt = Xt

n∑
i=1

wi
t

dSi
t

Si
t

− ct dt
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Simplest model

One risky asset and a money market account:

dSt = αSt dt + σSt dWt, dBt = rBt dt.

We maximize discounted utility of consumption:

max
{w0

t },{w1
t },{ct}

E

[∫ T

0
F (t, Xt, ct) dt + Φ(XT )

]
.

Wealth dynamics with portfolio weights w0
t , w1

t (w0
t + w1

t = 1):

dXt = Xt

(
w0

t r + w1
t α

)
dt − ct dt + w1

t σXt dWt.
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Problem formulation

We consider the stochastic control problem

max
{ut}0≤t≤T

E

[ ∫ T

0
F

(
t, Xt, ut

)
dt︸ ︷︷ ︸

running reward/penalty

+ Φ
(
XT

)︸ ︷︷ ︸
terminal reward

]

subject to the dynamics (continuous-time controlled SDE)

dXt = µ
(
t, Xt, ut

)
dt + σ

(
t, Xt, ut

)
dWt, X0 = x0,

with admissible controls ut ∈ U(t, Xt) for all t ∈ [0, T ]. We restrict attention to feedback
control laws of the form

ut = u(t, Xt).

Terminology: X = state variable, u = control variable, U = control constraint.

Note: No state space constraints.
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How do we solve this optimization problem?



Main idea

Embed the original problem in a family of problems indexed by (t, x) (start time and
state).

Tie the family together via a PDE: the Hamilton–Jacobi–Bellman (HJB) equation.

Reduce the stochastic control problem to solving this deterministic PDE.

For notational simplicity in the next slides we first assume X, W and u are scalar.
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Some notation

For any (feedback) control law u(·, ·), write

µu(t, x) := µ
(
t, x, u(t, x)

)
, σu(t, x) := σ

(
t, x, u(t, x)

)
, F u(t, x) := F

(
t, x, u(t, x)

)
.

For a control law u(·, ·) the second-order operator Lu acting on a smooth f is

(Luf)(t, x) = µu(t, x) ∂xf(t, x) + 1
2

(
σu(t, x)

)2
∂xxf(t, x).

Under a control law u(·, ·), the controlled state Xu solves

dXu
t = µ

(
t, Xu

t , ut

)
dt + σ

(
t, Xu

t , ut

)
dWt, ut = u(t, Xu

t ).
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Embedding the problem

For each (t, x), define problem P(t, x): maximize

Et,x

[ ∫ T

t

F
(
s, Xu

s , us

)
ds + Φ

(
Xu

T

)]
,

subject to
dXu

s = µ
(
s, Xu

s , us

)
ds + σ

(
s, Xu

s , us

)
dWs, Xt = x,

with u(s, y) ∈ U for all (s, y) ∈ [t, T ] × Rn.

Note: The original problem is P(0, x0).
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The optimal value function

Define the (controlled) performance for a law u by

J(t, x; u) := Et,x

[ ∫ T

t

F
(
s, Xu

s , us

)
ds + Φ

(
Xu

T

)]
.

The optimal value function is

V (t, x) := sup
u∈U

J(t, x; u), (t, x) ∈ [0, T ] × Rn.

We seek a PDE for V .
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Assumptions

We assume (for the derivation):

There exists an optimal feedback control û.

The optimal value V is sufficiently regular: V ∈ C1,2.

Interchange/limit steps used below are justified.
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The Bellman optimality principle

Dynamic programming relies heavily on the following basic result.

Proposition
If û is optimal on [t, T ], then it is optimal on every subinterval [s, T ] with t ≤ s ≤ T .

Proof idea: Law of iterated expectations.
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Basic strategy to derive the PDE

For simplicity of notations, we demonstrate with x ∈ R.

Fix (t, x) and a small h > 0.

Pick an arbitrary control law u.

Define a new control u∗ by

u∗(s, y) =
{

u(s, y), (s, y) ∈ [t, t + h] × R,

û(s, y), (s, y) ∈ (t + h, T ] × R.

That is, use u on [t, t + h] and then switch to the (unknown) optimal law û for the
remainder.
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Basic idea

Consider two strategies on [t, T ] starting from (t, x):

I: Use the optimal law û throughout. Then J(t, x; û) = V (t, x).

II: Use u∗ defined above. The total value is

J(t, x; u∗) = Et,x

[ ∫ t+h

t

F
(
s, Xu

s , us

)
ds + V

(
t + h, Xu

t+h

)]
.

By optimality, Strategy I is at least as good as Strategy II.
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Dynamic programming principle
Optimality gives

V (t, x) ≥ Et,x

[ ∫ t+h

t

F
(
s, Xu

s , us

)
ds + V

(
t + h, Xu

t+h

)]
,

for all u with equality if and only if u = û(t, x).
We also get the reverse inequality since

J(t, x; u∗) ≤ sup
u∈U

Et,x

[ ∫ t+h

t

F
(
s, Xu

s , us

)
ds + V

(
t + h, Xu

t+h

)]
.

and hence the Dynamic Programming Principle (DPP):

V (t, x) = sup
u∈U

Et,x

[ ∫ t+h

t

F
(
s, Xu

s , us

)
ds + V

(
t + h, Xu

t+h

)]
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Comparing strategies

By Itô’s formula applied to V (s, Xu
s ) on [t, t + h],

V
(
t + h, Xu

t+h

)
= V (t, x) +

∫ t+h

t

(
∂tV + LuV

)
(s, Xu

s ) ds

+
∫ t+h

t

∂xV (s, Xu
s ) σu(s, Xu

s ) dWs.

Taking expectations and rearranging yields

Et,x

[ ∫ t+h

t

(
F u + ∂tV + LuV

)
(s, Xu

s ) ds

]
≤ 0.

Remark: We have equality above if and only if u = û.
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Letting h → 0

Divide by h, move h inside the expectation, and let h ↓ 0 to obtain the pointwise
inequality

F (t, x, u) + ∂tV (t, x) + (LuV )(t, x) ≤ 0, for all u,

with equality if and only if u = û(t, x). Thus,

∂tV (t, x) + sup
u∈U

{
F (t, x, u) + (LuV )(t, x)

}
= 0.
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The HJB equation

Thoerem
Under suitable regularity assumptions:

V solves the Hamilton–Jacobi–Bellman PDE

∂tV (t, x) + sup
u∈U

{
F (t, x, u) + (LuV )(t, x)

}
= 0, V (T, x) = Φ(x).

For each (t, x), the supremum is attained at u = û(t, x).
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Multi-dimensional generator and dynamics

For u ∈ Rk define

µu(t,x) := µ(t,x, u), σu(t,x) := σ(t,x, u), Cu(t,x) := σu(t,x)σu(t,x)⊤.

For smooth f and fixed u, the generator is

(Luf)(t,x) =
n∑

i=1
µi

u(t,x) ∂xif + 1
2

n∑
i,j=1

Cij
u (t,x) ∂xixj f.

Under a control law u the state satisfies

dXu
t = µ

(
t,Xu

t , ut

)
dt + σ

(
t,Xu

t , ut

)
dWt, ut = u(t,Xu

t ).
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Logic and problem

We derived HJB as a necessary condition assuming V is the optimal value and sufficiently
smooth.

Question: If we solve the HJB PDE, have we found the optimal value and an optimal
control?
Answer: Yes — this is guaranteed by the Verification Theorem.
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The verification theorem

Suppose H(t, x) and g(t, x) satisfy

H is sufficiently integrable and solves

∂tH + sup
u∈U

{F (t, x, u) + (LuH)(t, x)} = 0, H(T, x) = Φ(x).

For each (t, x) the supremum is attained at u = g(t, x).

Then
1 V (t, x) = H(t, x) is the optimal value function, and
2 there exists an optimal control û given by û(t, x) = g(t, x).
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Handling the HJB equation

1 Start from the HJB for V .
2 For fixed (t, x) solve the static maximization

max
u∈U

{
F (t, x, u) + (LuV )(t, x)

}
,

treating t, x and the (unknown) V and its derivatives as parameters.
3 Denote the maximizer û = û(t, x; V ). This is the candidate optimal law.
4 Substitute û(t, x; V ) back into HJB to obtain a PDE for V only:

∂tV + F û(t, x) + (LûV )(t, x) = 0, V (T, x) = Φ(x).

5 Solve this PDE. Then set the feedback law to û(t, x; V ).
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Making an Ansatz

The HJB is generally nonlinear and hard; closed forms are rare.

In applications one often guesses a parametric form (Ansatz) for V and identifies the
parameters from the PDE.

Heuristic: V often inherits structure from Φ and the running criterion F .

Many classical solved problems are crafted to be analytically tractable.
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Recall the simplest model

One risky asset and a money market account:

dSt = αSt dt + σSt dWt, dBt = rBt dt.

We maximize discounted utility of consumption:

max
{w0

t },{w1
t },{ct}

E

[∫ T

0
F (t, Xt, ct) dt + Φ(XT )

]
.

Wealth dynamics with portfolio weights w0
t , w1

t (w0
t + w1

t = 1):

dXt = Xt

(
w0

t r + w1
t α

)
dt − ct dt + w1

t σXt dWt.

Issue: with no constraint on Xt one can push wealth negative and obtain unbounded
utility by consuming arbitrarily large amounts.
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What are the problems?

Unbounded objective: consume “arbitrarily large” amounts.

Wealth Xt can become negative; no prohibition in the näıve setup.

Natural constraint Xt ≥ 0 is a state constraint and classical dynamic programming
does not allow it directly.

Good news: Dynamic Programming can be generalized to handle such problems.
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Generalized problem (with exit at the boundary)

Let D be a nice open subset of [0, T ] × Rn and consider

max
u∈U

E
[∫ τ

0
F (s, Xu

s , us) ds + Φ(τ, Xu
τ )

]
,

with controlled dynamics

dXt = µ(t, Xt, ut) dt + σ(t, Xt, ut) dWt, X0 = x0,

and stopping time (exit or terminal time)

τ = inf{ t ≥ 0 : (t, Xt) ∈ ∂D } ∧ T.
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Generalized HJB

Under suitable regularity, the value function V solves

∂tV (t, x) + sup
u∈U

{
F (t, x, u) + LuV (t, x)

}
= 0, (t, x) ∈ D,

with boundary condition V (t, x) = ϕ(t, x) for (t, x) ∈ ∂D, where

LuV := µ(t, x, u) ∂xV + 1
2σ2(t, x, u) ∂xxV.

A standard verification theorem applies.
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Applications in trading problems



Reformulated consumption–investment problem

Exit when wealth hits zero:

max
ct≥0, wt∈R

E
[∫ τ

0
F (t, ct) dt + Φ(Xτ )

]
, τ = inf{t ≥ 0 : Xt = 0} ∧ T,

with notation w1
t = wt, w0

t = 1 − wt and dynamics

dXt = wt(α − r)Xt dt + (rXt − ct) dt + wt σXt dWt.
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HJB equation

Take F (t, c) = e−βt c1−γ

1 − γ
(CRRA utility, γ ̸= 1). The HJB reads

∂tV + sup
c≥0, w∈R

{
e−βt c1−γ

1 − γ
+ wx(α − r)Vx + (rx − c)Vx + 1

2x2w2σ2Vxx

}
= 0,

with V (T, x) = 0 and V (t, 0) = 0.
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Solving the embedded static problem

First order conditions give (where Vx = ∂xV , Vxx = ∂xxV )

c∗(t, x) =
(

e−βt

Vx(t, x)

)1/γ

= h(t)−1/γ x, w∗(t, x) = − Vx

xVxx
· α − r

σ2 = α − r

γ σ2 .

Motivated by homotheticity, use the ansatz

V (t, x) = e−βt h(t) x1−γ

1 − γ
, h(T ) = 0.
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ODE for the scaling function h(t)

Plugging the ansatz and c∗, w∗ into HJB yields the Bernoulli-type ODE

ḣ(t) =
[
β − (1 − γ)

(
r + (α − r)2

2γ σ2

)]
h(t) − (1 − γ) h(t) 1−1/γ , h(T ) = 0

Thus
c∗

t = h(t)−1/γXt, w∗
t = α − r

γ σ2 (Merton proportion).

The ODE can be solved in closed form (Bernoulli equation).
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Observations

State constraints (e.g. Xt ≥ 0) can be handled via a generalized HJB with exit
times.

With CRRA utility and Black–Scholes returns:

w∗
t = α − r

γ σ2 (constant in t and x).

Optimal consumption is proportional to wealth: c∗
t = m(t) Xt with m(t) = h(t)−1/γ

and h from a Bernoulli ODE.
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Limit order book

1

2

3
time
priority

market order

cancellation

Bid side Ask side

|

mid price

P Bid
1P Bid

2P Bid
3

. . .

P Ask
1 P Ask

2 P Ask
3

. . .

QAsk
1

QAsk
2

QAsk
3

QBid
1

QBid
2

QBid
3

PM (t)
Price

1

1Picture credit: C. Lehalle, O. Mounjid, and M. Rosenbaum. Optimal liquidity-based trading
tactics. Stochastic Systems. 11(4), 2018.
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Market Making

Provide liquidity by posting bid/ask in the LOB and earn the spread.

Goal: profit from spread while controlling inventory risk.

Classical approach: stochastic control ⇒ HJB for optimal quotes.
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A Canonical MM Model

Mid-price: dSt = σ dWt.

Quotes: post Sb
t , Sa

t ; define spreads δb
t = St − Sb

t , δa
t = Sa

t − St.

Order arrivals (independent of W ):

λb(δ) = λa(δ) = Ae−kδ.

Inventory: qt = N b
t − Na

t .

Cash:
dXt = (St − δa

t ) dNa
t − (St − δb

t ) dN b
t .

CARA utility at T :

V (s, x, q, t) = sup
{δa

u,δb
u}

E
[
−e−γ(XT +qT ST ) | Xt=x, St=s, qt=q

]
.
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Analytical limits & RL opportunity

HJB admits (semi) closed-form solutions only under strong assumptions (e.g.
CARA/CRRA/quadratic utility, specific dynamics).

Real markets ⇒ specification risk.

Reinforcement learning for MM: Q-learning, SARSA, deep policy gradients; states:
quotes/LOB features, inventory, volatility, order-flow; actions: spreads/quotes;
rewards: P&L with inventory penalties, etc.

Multi-agent RL to model competition and interaction effects.
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