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Introduction to reinforcement learning
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The basics of reinforcement learning

@ Goal: automate goal-directed learning and decision-making.

@ Setup: an agent interacts with an environment via states s;, actions a;, and
rewards ri41.

@ Objective: learn a policy 7(a | s) that maximizes long-term return.

State Si

Actions A
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Value function

@ If we consider infinite time horizon with discounted reward where v € [0,1), and

E! denotes the expectation under the policy IT, V* for each s € S to be

oo
> (s, ar)|so = 8] :

V*(s) = sup VI(s) := sup E!
o i Pt

subject to
St41 ™~ P(Suat), ay ~ 7Tt(3t>-

@ The problem with finite time horizon can be expressed as

T—-1

V*(s) = s11_1[p VH(S) = Slrllp]EH [Z ri(sg,ar) + rr(sr)

S0 s}, Vs e S,
t=0

subject to

St+1NPt(St,at), CLtNﬂ't(St>, OStST*l
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Bellman equation for the ()-function

@ DPP = Bellman optimality:

* _ “( I P,
Vv (s)—gleaj‘( E[r(s,a) +yV*(s')|s,a], s ~P(-|s,a).

@ (-function:

Q*(s,a) =E[r(s,a) + yV*(s') | s,a] , V*(s) zmc?XQ*(s,a).

@ Interpretation: Q*(s,a) = one-step reward + discounted next-state value;
m*(s) = arg max, Q* (s, a).
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Example: -learning

@ Value-based RL to learn Q* by bootstrapping Bellman optimality from samples
(s,a,r,s).

@ Update at iteration n:
Qnii1(s,a) < (1 —an) Q"(s,a) +ay |r(s,a) +vmax Q"(sﬂa’)},

——

current estimate

new estimate

where «,, is the learning rate.

@ Policy: m,41(s) = argmax, Qni1(s,a) (use e-greedy for exploration).
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Overview

@ Goal: Show how the discrete Bellman equation limits to the continuous-time HJB,
and how core RL updates are sample-based solvers of that PDE.

@ Three links:
@ Discrete Bellman (semi-Lagrangian) = HJB via |t6—Taylor expansion.

@ TD/Q-learning errors = HJB residual / Hamiltonian.

© Policy iteration / actor—critic = policy improvement for HJB (incl. soft
variants).
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Controlled diffusion and objective

Continuous-time controlled SDE:
dX; = u( Xy, a0) dt + o( Xy, a0) dW;, X, € RY, ap € A.

Discounted infinite-horizon return:
JT(x) =E] [/ e Ptr(Xy,a)dt|, p>0.
0

Value function: V(z) = sup, J"(x).

Controlled generator for smooth f:

(Lf)(x) = plx,a) - V f(z) + %TI“(O‘UT(.%‘, a) sz(m)).
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Discrete one-step Bellman (semi-Lagrangian form)

Time step h > 0, per-step discount v, = e ”" =1 — ph + o(h). The discrete Bellman
equation (semi-Lagrangian form) is

V(t,z) = sup E[r(z,a) h 4+, V(t+ h,X[})] .
acA

One Euler step:

Xf;%:a:—&-u(x,a)h—&—a(m,a)\/ﬁ{, &~ N(0,1).
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|t6—Taylor expansion and cancellation

Expand V to O(h) and take expectation:

E[V(t+h X25)] =V(t,a)+hoV(t,z)+hVV(tz) p(z,a)
+ g Tr(aaT(z, a) V2V (t,z)) + o(h).
Plug into Bellman, subtract V (¢, ), divide by h, then let h | 0:

0 = sup {r(a:,a) + 0V + VV-pu(z,a) + 3 Tr(oo " (z,a) VZV) — pV}.
acA
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HJB in generator/Hamiltonian form

Generator form:

oV (t,z)+ st;p{r(x,a) + (LV)(t,x)} — pV(t,x) = 0.

Hamiltonian H(z,p, M) = sup{r(z,a) + p(z,a) - p+ 3 Tr(co " (z,a)M)}:
OV + H(x,VV,V?V) = pV = 0.

Infinite-horizon stationary case (no t-dependence):

stip{r(x, a) 4+ (LV)(z)} — pV(z) = 0.
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TD error ~ HJB residual

Temporal Difference (TD) error with step h:
Op i=r(x,a)h+ v V(Xign) — V(x).

Taking expectation and using the expansion:

E[6, | z,a] = h(r(x, a) + (L2V)(z) — pV(:c)) +o(h).

Hence
1 in mean a .
—0p ——— 1+ LV —pV | (the HIB residual at (x,a)).
h h—0
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(Q-learning =~ stochastic value iteration for HJB

One-step action-value:
Qn(x,a) :==r(z,a)h+ E[V(Xfﬂl)] , V(z) = sup Qu(z, a).

Then
M — r(x,a) + LV (x) — pV(z).

H(z,a;V)

Off-policy Q-learning update:
Qn + Qn + Oé<7"h +Yn H;&}XQh(CU/, a') — Qn(x, a))7

i.e. stochastic value iteration for the HJB; the scaled limit Q5 /h estimates the
Hamiltonian integrand.
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Policy evaluation in continuous time = Poisson/HJB equation

For a fixed policy T,
r™(x) := Bgrn[r(z,a)], LTV :=Eq,[LV].
Evaluation PDE (linear):
"+ LV —pVT =0 <= (pI - LT)V" =7".

TD/Least Square TD with features solves a projected version of this PDE.
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Actor—Critic in continuous time (policy gradients via HJB)

Define the differential advantage:

A™(z,a) :=r(z,a) + LV (x) — pV ™ (z).

A continuous-time policy gradient theorem (discounted case) yields policy gradient:

VoJ(0) = Ex[Vglog mo(a|z) A™(z,a)],

with A7 estimated by d;,/h from the critic, and update 6 < 6 + V. J(0).
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Soft HJB (entropy regularization)

Max-entropy objective adds a H(7(:|x)):
0= sup {EM [r(2,a) + LV (2) — pV(2)] + @ H(7T(~|:L°))}.
Optimal policy (Boltzmann in continuous-time Q-integrand):
*(alz) o exp(é [r+ LoV — pV]).

Soft HIB replaces max, by log-sum-exp; SAC-style updates solve it sample-wise.

Fenghui Yu Bellman — HJB <+ RL August 2025

20/22



Practical recipe (how to “do RL" for an HJB)

@ Time-discretize with small h.

@ Critic: regress Vi (or Q) to minimize the squared TD error

E[(rh+ V(@) — Vo(@)”]

equivalently, fit d,/h to zero.

© Actor: improve by greedy (deterministic)

a*(z) = arg max H(z, a; V),

or by a stochastic policy updated with the gradient using ﬁt estimated from critic.

@ Shrink h (or refine the state interpolant) to reduce discretization error; this
converges to the viscosity solution of the HJB.
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Discount mapping and scaling

Discrete <> continuous discount:

_ 1 1—
Y =e Pt = p:—glogfyhz h% (h —0).

Reward scaling:
ri(z,a) = r(z,a)h.

Rule of thumb: If your TD/Q update uses (rh, ~p,) at step h, then 0y, /h estimates
the HJB residual.
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