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Real-time data-driven maintenance logistics
• Jointly with Joachim Arts, Collin Drent, Melvin 

Drent, Willem van Jaarsvelt, Peter Verleijsdonk
• Companies  involved: ASML, Philips, NS, Fokker

• Problem setting: 
• High-tech systems in a network
• Real-time condition information
• Failures and unavailability are costly
• Maintenance resources are shared over the 

network

• Question:
• When to do maintenance?
• How to optimally dispatch real-time the 

maintenance resources?



Real-time data-driven maintenance logistics
• Why is it  challenging?

• Highly dynamic, stochastic environment
• Under an oracle, the problem reduces to 

the traveling multi-maintainer problem with 
response-time dependent costs

• Our A(P)I success:
• Our solution accounts for real-time 

information
• Our solution is interpretable and near-

optimal
• Our solution improves on heuristic state-of-

the-art dispatching algorithms



Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE ( ) travel

• Strategic location ( )

• Machine location ( )

• Degradation of a component raises an alert ( )

• Machine failure ( )

Stella Kapodistria
Sticky Note
Link to animations: https://retrospectiverotations.com/k-dtmpa/k-dtmpa.html



Step 1: Solve the single maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2022.06.044. 

Step 2: Solve the multi-maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2024.05.049. 
https://doi.org/10.1016/j.ejor.2025.01.026. 

Step 3: Solve the single maintainer problem for heterogeneous machines on a network

https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527_Verleijsdonk_hf.pdf (Chapter 4)

Step 4: Solve the multi-maintainer problem for heterogeneous machines on a network

open problem!

Sketching the idea

https://doi.org/10.1016/j.ejor.2022.06.044
https://doi.org/10.1016/j.ejor.2024.05.049
https://doi.org/10.1016/j.ejor.2025.01.026
https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527_Verleijsdonk_hf.pdf
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The challenges of the single component case
iXR: filament



Cost optimal 
maintenance 

planning

OptimizationPhysical model

▪ Population of components

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time
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Cost optimal 
maintenance 

planning

OptimizationPhysical model

▪ Population of components

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time

When to do maintenance?

condition (𝜽) Known from 
historical data

𝑋 𝑡 , 𝑡 ≥ 0

time

PAGES 1 & 2 NOTES



When to do maintenance?



Cost optimal 
maintenance 

planning

OptimizationPhysical model

▪ Heterogeneous population

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time

Integrated learning and optimizationData with physical 
model properties

Cost optimal 
maintenance 

planning



How to account for a heterogeneous population in 
maintenance planning?

Integrated condition replacement 
policy

𝑝 𝜽 𝒙 ∝ 𝐿(𝒙|𝜽)𝑝(𝜽)

Updated 
parameter prior

Observed data 
added

Traditional condition replacement 
policy

time

condition (𝜽)

time

condition (𝜽)
𝜽

Known from 
historical data

PAGES 3-5 NOTES
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Optimal policy

𝜉 = 𝜉 =



𝜉 = 𝜉 =

Optimal policy



Let {𝑋𝑡, 𝑡 ≥ 0} denote the stochastic process that drives the condition with unkown parameters 𝜽.

Consider 𝑉 ℎ𝑡, 𝑠𝑡, 𝑡 with ℎ𝑡 = ( 𝑠0, 𝑎1 , 𝑠1, 𝑎2 ,… , (𝑠𝑡−1, 𝑎𝑡))

Step 1: State space collapse 𝑉 ℎ𝑡, 𝑠𝑡, 𝑡 ↦ 𝑉 ෢𝜽𝒕, 𝑠𝑡, 𝑡 with ෢𝜽𝒕 denoting the efficient statistic

E.g., if  {𝑋𝑡, 𝑡 ≥ 0} is CPP then ℎ𝑡, 𝑠𝑡, 𝑡 ↦ 𝑛, 𝑥𝑡, 𝑡
Step 2: Stochastic ordering of  {𝑋𝑡, 𝑡 ≥ 0} with respect to ෢𝜽𝒕, 𝑠𝑡, 𝑡

E.g., if  {𝑋𝑡, 𝑡 ≥ 0} is CPP, then non-increasing in t and non-decreasing in x

Step 3: Properties of  the policy with respect to ෢𝜽𝒕, 𝑠𝑡, 𝑡

Building blocks of  the theory



Cost savings
Oracle < Bayes cost gap < Myopic 𝜽 updating cost gap < Historical 𝜽 cost gap

condition (𝜽)

“Many small jumps”

time

condition (𝜽)

“Few large jumps”

time



Cost savings
Oracle < Bayes cost gap < Myopic 𝜽 updating cost gap < Historical 𝜽 cost gap

Intermittent degradation signal gap = 15% 
Imperfect degradation signal gap = 6% 

condition (𝜽)

“Many small jumps”

time

condition (𝜽)

“Few large jumps”

time
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The challenges of the network case



Goal: Maintenance planning using IoT data in a network of machines

• Field service engineers FSE ( ) travel in a network of machines

• Strategic location ( )

• Machine location ( )

• Degradation of a machine raises an alert ( )

• Machine failure ( )



Goal: Maintenance planning using IoT data in a network of multi-component machines

Challenges

▪ Traveling salesman problem

▪ Real time scheduling problem

▪ Maintenance optimization problem

Preventive/Corrective/Downtime cost and degradation

High-tech 
equipment

Enable exact 
optimization 
for small 
instances

Assumptions 
based on 
literature

Online 
decision 
making



Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintener problem
Key elements
• Reformulation of the action space 
• Choosing a smart, suitable initial solution

• Incorporating dispatching and relocation
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea



Iterative methods

21

Approximate policy iteration
1. Choose an initial policy 𝜋0
2. Select a subset of states 𝑆′ ⊆ 𝑆
3. For all ℎ ∈ 𝑆′: compute the best action 𝑎∗ using simulation given the policy 𝜋0 is used after

⇾ 𝑎∗ = arg max
𝑎0 ∈𝐴(ℎ0)

𝐶 ℎ0, 𝑎0 + 𝛾𝔼𝜋0 𝑄 𝐻1 ℎ0, 𝑎0 , ℎ0 ∈ 𝑆′

4. Train a neural network classifier on the constructed data set → induces a policy 𝜋1
• Input: feature representation 𝑓(ℎ) of a state ℎ ∈ 𝑆.
• Output: probability distribution over the action space

5. If 𝜋1 improves upon 𝜋0: set 𝜋0 = 𝜋1 and return to step 2, else: terminate 

Requires a suitable choice of 𝜋0 and 𝑆′!



Approximate policy iteration

22

Subset of states 𝑆′
• Must depend on 𝜋0
• Idea: Given  𝜋_0, construct a data set 𝒟 = {(ℎ, 𝑎𝜋0

∗ )} containing “optimal”, “most-likely” 
state-action pairs for the MDP reformulation using simulation.

Initial policy 𝜋0
• Display (some) desired behavior
• Must be a fast algorithm

• I.e., polynomial time complexity
• Idea: Equip existing greedy/reactive heuristics

• Nearest neighbour
• Greedy based on distance/cost/time
• Deterministic problem by first order approximation



Approximate policy iteration

23

Training the neural network classifier
• Split the data set in a training set and a test set
• Minimize (cross-entropy) training loss 𝐿 𝜃 on the training set

• Loss function measures the distance between the neural network policy and the simulation-based 
policy for the feature representation of the states in the training set

• Fitting the neural network parameters 𝜃 is an iterative, gradient-based process: In each step, the 
gradient of 𝐿 𝜃 is estimated with respect to 𝜃. Subsequently, 𝜃 is updated by taking a step in the 
opposite direction.

Feature representation



Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintener problem
Key elements
• Reformulation of the action space 
• Choosing a smart, suitable initial solution

• Incorporating dispatching and relocation
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea



Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE ( ) travel

• Strategic location ( )

• Machine location ( )

• Degradation of a component raises an alert ( )

• Machine failure ( )



Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space 
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea
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Single maintainer (K=1) 
• Developed heuristics yield competitive policies
• Deep reinforcement learning outperforms the heuristics

Dispatching & repositioning (K>1) 

General insights 
✓API can solve single maintainer instances up to optimality 

within few iterations and produces state-of-the-art improved 
policies for multi-maintainer instances.

✓Smart dispatching heuristics are superior initial solutions for 
solving multi-maintainer instances.

✓The trained policies are robust against removing an asset or 
engineer or yield a suitable initial solution.

✓Deep reinforcement learning can be applied to industrial cases 
to provide cost-efficient and scalable solutions.



Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space 
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea



Iterative methods

29

Approximate policy iteration
1. Choose an initial policy 𝜋0
2. Select a subset of states 𝑆′ ⊆ 𝑆
3. For all ℎ ∈ 𝑆′: compute the best action 𝑎∗ using simulation given the policy 𝜋0 is used after

⇾ 𝑎∗ = arg max
𝑎0 ∈𝐴(ℎ0)

𝐶 ℎ0, 𝑎0 + 𝛾𝔼𝜋0 𝑄 𝐻1 ℎ0, 𝑎0 , ℎ0 ∈ 𝑆′

4. Train a neural network classifier on the constructed data set → induces a policy 𝜋1
• Input: feature representation 𝑓(ℎ) of a state ℎ ∈ 𝑆.
• Output: probability distribution over the action space

5. If 𝜋1 improves upon 𝜋0: set 𝜋0 = 𝜋1 and return to step 2, else: terminate 

Requires a suitable choice of 𝜋0 and 𝑆′!



Approximate policy iteration
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Subset of states 𝑆′
• Must depend on 𝜋0
• Idea: Construct a data set 𝒟 = {(ℎ_𝑖^(𝑎_𝑖^(𝑘−1) ), 𝑎_𝑖^𝑘) | 𝑖∈ I} containing “optimal”  state-

action pairs for the MDP reformulation using simulation.

Initial policy 𝜋0
• Display (some) desired behavior
• Must not ‘self-correct’

• E.g., a partitioned solution will not learn to share resources over the network
• Must be a fast algorithm

• I.e., polynomial time complexity
• Idea: Equip existing greedy/reactive heuristics with state-of-the-art dispatching algorithm



Approximate policy iteration

31

Initial policies 𝜋0

• Ranking heuristics with sequential dispatching: First assign engineer 1, then engineer 2, …
• Does not include cooperative behavior

• Ranking heuristics with simultaneous dispatching: Shortest pair first
• Includes suboptimal cooperative behavior

• Ranking heuristics with Hungarian dispatching: Construct and solve an assignment problem
• Includes optimal cooperative behavior
• Assignment problems are solvable in polynomial time complexity
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Results

https://retrospectiverotations.com/publications.html


Approximate policy iteration

34

Training the neural network classifier
• Split the data set in a training set and a test set
• Minimize training loss 𝐿 𝜃 on the training set

• Loss function measures the distance between the neural network policy and the simulation-based 
policy for the feature representation of the states in the training set

• Fitting the neural network parameters 𝜃 is an iterative, gradient-based process: In each step, the 
gradient of 𝐿 𝜃 is estimated with respect to 𝜃. Subsequently, 𝜃 is updated by taking a step in the 
opposite direction.

Feature representation
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Dispatching & Repositioning: Dutch academic hospitals (M35K5-Q1C1)

𝑀 = 35 assets

𝐾 = 5 engineers

𝑁𝑚 ≡ 2 states

c𝑃𝑀 = 0 cost PM

c𝐶𝑀 = 0 cost CM

c𝐷𝑇 = 1 cost DT

c𝑇 = 0.05 cost travel

𝜃𝑖𝑗 ∈ {1, … , 16} time travel

t𝑃𝑀 = 4 time PM

t𝐶𝑀 = 4 time CM

Policy Performance

Benchmark (Reactive) 65.612 ± 0.074

𝜋1 API (𝜋0: Reactive) 63.178 ± 0.070

𝜋2 API (𝜋0: Reactive) 62.101 ± 0.069

⇒ 5.35% improvement!

Source

https://retrospectiverotations.com/k-dtmpa/experiments/M35K5Q3C1/M35K5Q3C1.html
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Results

An exemplary showcase of learned behavior from a
neural network policy trained via API: Upon dispatching
an engineer to perform corrective maintenance in
Roermond ☉, the neural network policy repositions an
engineer from Eindhoven ☉ to Tilburg to improve
coverage in the network in anticipation of future alerts
and failures.



Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE ( ) travel

• Strategic location ( )

• Machine location ( )

• Degradation of a component raises an alert ( )

• Machine failure ( )



Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space 
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the single maintainer problem for heterogeneous machines
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea



Heterogeneous multi-component systems

Component 2

𝑝 𝜽 𝒙 ∝ 𝐿(𝒙|𝜽)𝑝(𝜽)

Updated 
parameter prior

Observed data 
added

Component 1

time

condition (𝜽)

time

condition (𝜽)



Heterogeneous multi-component systems

Component 2
(marginal)

Component 1
(marginal)

time

condition (𝜽)

time

condition (𝜽)

For 𝑡 = 0
(joint)

Condition 2

Condition 1



Heterogeneous multi-component systems

Component 2
(marginal)

Component 1
(marginal)

time

condition (𝜽)

time

condition (𝜽)

For 𝑡 = 1
(joint)

Condition 2

Condition 1
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