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Real-time data-driven maintenance logistics

* Jointly with Joachim Arts, Collin Drent, Melvin
Drent, Willem van Jaarsvelt, Peter Verleijsdonk

* Companies involved: ASML, Philips, NS, Fokker !ﬂ

* Problem setting: N7 ' o
* High-tech systems in a network . ) ({*«“ﬂ "'Q
* Real-time condition information _ W “ ;
* Failures and unavailability are costly (4
* Maintenance resources are shared over the TRy .
network < l o

* Question:
* When to do maintenance?
* How to optimally dispatch real-time the N
maintenance resources?



Real-time data-driven maintenance logistics

* Why s it challenging?

* Highly dynamic, stochastic environment
* Under an oracle, the problem reduces to
the traveling multi-maintainer problem with

response-time dependent costs

* Our A(P)I success:
* Qur solution accounts for real-time
information

* Our solution is interpretable and near-

optimal

e Our solution improves on heuristic state-of- &%

the-art dispatching algorithms
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Costs

Time: 0
50 4 Current Location: [1, 3, 4, 6,
Action: [1, 24, 4, 6, 91
40 Reward: 0.00
Cost: 0.05
30 4 Cum. Cost: 0.05
Last Location: [0, 0, 0, 0, 0]
201 Last Action: [0, 0, 0, 0, 01
M: 3
10 4 m: 0
Cc:1
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Observation Alerts
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Stella Kapodistria
Sticky Note
Link to animations: https://retrospectiverotations.com/k-dtmpa/k-dtmpa.html


Sketching the 1dea

Step 1: Solve the single maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2022.06.044.

Step 2: Solve the multi-maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2024.05.049.
https://doi.org/10.1016/j.ejor.2025.01.026.

Step 3: Solve the single maintainer problem for heterogeneous machines on a network

https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527 Verleijsdonk hf.pdf (Chapter 4)

Step 4: Solve the multi-maintainer problem for heterogeneous machines on a network

open problem!

TU/e


https://doi.org/10.1016/j.ejor.2022.06.044
https://doi.org/10.1016/j.ejor.2024.05.049
https://doi.org/10.1016/j.ejor.2025.01.026
https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527_Verleijsdonk_hf.pdf
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The challenges of the single component case

T .




Population of components

Condition data to failure

Physical model

C'F F
\(X(0),t = 0}

Optimization

ﬁ

Cost optimal

maintenance

planning
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Population of components

Condition data to failure

Physical model

C'F F
\(X(0),t = 0)

Cost optimal

Optimization

' maintenance

planning

When to do maintenance?

condition (0) &= Known from

historical data

A{X(0),t > 0}




When to do maintenance?

Drent, Drent, Arts and Kapodistria: Integrated Learning and Decision Making

T T T T T T T T T T T T
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Figure 1  Two historical IXR filament degradation paths. TU /e



Data with physical

model properties

Heterogeneous population e

Condition data to failure

P P
LR N | G LB B |
C'F F C'F F

#{X(@®),t = 0}

N Optimization

Cost optimal

maintenance

planning
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How to account for a heterogeneous population in

maintenance planning?

Traditional condition replacement
policy

condition (@)

/ 0

|

Known from
historical data

time

Integrated condition replacement

policy
condition (0)
4&

Updated
' i parameter prior ﬂ

p(6]x) < L(x|6)p(0)

Observed data
added

time
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Optimal policy

12%: (x,n,t) = (0,0,0) 1251E (x,n,t) = (0,0,0)
S=10|— =10
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Optimal policy

T x
12 Failure 12 Failure
f =1O e e e e e e et —— ———— f :10 e e e e ——
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Building blocks of the theory

Let {X;,t = 0} denote the stochastic process that drives the condition with unkown parameters 6.
Consider V (h;, s¢, t) with hy = ((Sg,a4), (51, a3), ..., (St—1,a¢))
Step 1: State space collapse V (h, ¢, t) = V(@\t, St t) with 8, denoting the efficient statistic
E.g., if {X;, t = 0} is CPP then (h, s¢, t) = (1, x4, t)
Step 2: Stochastic ordering of {X;,t = 0} with respect to (é\t, St t)
E.g., if {X;,t = 0} is CPP, then non-increasing in t and non-decreasing in x

Step 3: Properties of the policy with respect to (é;, St, t)

THEOREM 1. At each component age t € Ny, for a given number of shock arrivals n € Ny, there
exists a control limit (™Y <&, such that the optimal action is to carry out a preventive replacement

if and only if x> 6™ . The control limit 5™? is monotonically non-decreasing in t, for all n.

TU/e



Cost savings

Oracle < Bayes cost gap < Myopic @ updating cost gap < Historical @ cost gap

“Few large jumps”

condition (0)
+

Pf 1 fom

“Many small jumps”

condition (@)
4

T T time

TU/e



Cost savik

7 v

Oracle < Bayes cost gap < Myopic 8 updating cost gap < Historical @ cost gap

“Few large jumps” “Many small jumps”

condition () condition (0)
a a

»

b1 1 fem tf 1 f o

Intermittent degradation signal gap = 15%
Impertect degradation signal gap = 6%

TU/e
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The challenges of the network case




Goal: Maintenance planning using loT data in a network of machines
* Field service engineers FSE (@) travel in a network of machines

Strategic location (O) ¢

*  Machine location (( ) O

\.

* Degradation of a machine raises an alert ( |)
e Machine failure (O)

&

)
A 4

[FSE

TU/e



Goal: Maintenance planning using loT data in a network of multi-component machines
Challenges

= Traveling salesman problem .
= Real time scheduling problem O

)
= Maintenance optimization problem
&
Preventive/Corrective/ O
ea N [FSE S
O @)
o B = (&
High-tech Enable exact  Assumptions  Online
equipment  Optimization  based on decision A g
for small literature makin O
g
instances

TU/e



Sketching the 1dea

Step 1: Solve the single maintainer problem
» Compare API with MDP - Exact method
Solve exactly MDP for small problems

Step 2

Step 3

TU/e



Iterative methods

Approximate policy iteration

21

1.
2.
3.

Choose an initial policy m
Select a subset of states S' € S
Forall h € S": compute the best action a* using simulation given the policy 7, is used after

— a* = arg max{C (hy, ag) + yE™[Q(H;)|ho, aol}, hy € S’
ag €A(ho)
Train a neural network classifier on the constructed data set — induces a policy m4
. Input: feature representation f(h) of a state h € S.
. Output: probability distribution over the action space

If T, improves upon 1y: set Ty = m; and return to step 2, else: terminate

Requires a suitable choice of 7, and S'!

TU/e



Approximate policy iteration

Subset of states S’
* Must depend on 7

* Idea: Given m_0, construct a datasetD = {(h, ay, )} containing “optimal”, “most-likely”

state-action pairs for the MDP reformulation using simulation.

Initial policy 7,
e Display (some) desired behavior
e Must be a fast algorithm
* l.e., polynomial time complexity
» Idea: Equip existing greedy/reactive heuristics
* Nearest neighbour
* Greedy based on distance/cost/time
* Deterministic problem by first order approximation

22

TU/e



Approximate policy iteration

Training the neural network classifier
e Split the data set in a training set and a test set

* Minimize (cross-entropy) training loss L(0) on the training set
* Loss function measures the distance between the neural network policy and the simulation-based
policy for the feature representation of the states in the training set
* Fitting the neural network parameters 6 is an iterative, gradient-based process: In each step, the
gradient of L(6) is estimated with respect to 8. Subsequently, 0 is updated by taking a step in the
opposite direction.

Feature representation

1y | .. av _ua jv 40 P . Lav ua v 0, 6 Lav
f (h) =\ Ly Ny, fl . fl ! 3 fl gla e s UM s TEprs Uy s t]\,{ ) t]\..{ ’ gf\f‘fﬁ. E D%
meM

s TU/e



Sketching the 1dea

Step 1: Solve the single maintainer problem
» Compare API with MDP - Exact method
Solve exactly MDP for small problems

Step 2

Step 3

TU/e



Costs

Time: 0.

200 1 Current Location: 0.
Action: PASS

J Reward: 0.00

330 Cost: 0.00
Cum. Cost: 0.00

100 A Last Location: -1.
Last Action: None.
M: 6

50 7 m: 0
3

04 .0 K:1
01234567890123434 g 1
Observation Alerts
t:0 DRL Agent
.
1
.
3
0
4
o
2
.
5
.
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Sketching the 1dea

Step 1: Solve the single maintainer problem
» Compare API with MDP - Exact method
Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
* Reformulation of the action space
* Choosing a smart, suitable initial solution
* Prioritize machines based on proximity, urgency, and economic risk
* Incorporating dispatching and relocation
* Benchmark against heuristic policies
» Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3

TU/e



Single maintainer (K=1)
 Developed heuristics yield competitive policies
* Deep reinforcement learning outperforms the heuristics K-DTMPA

Dispatching & repositioning (K>1)

General insights -
v'API can solve single maintainer instances up to optimality Repositioning
within few iterations and produces state-of-the-art improved

policies for multi-maintainer instances.

v'Smart dispatching heuristics are superior initial solutions for
solving multi-maintainer instances.

v'The trained policies are robust against removing an asset or
engineer or yield a suitable initial solution.

v'Deep reinforcement learning can be applied to industrial cases
to provide cost-efficient and scalable solutions.

” TU/e



Sketching the 1dea

Step 1: Solve the single maintainer problem
» Compare API with MDP - Exact method
Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
* Reformulation of the action space
* Choosing a smart, suitable initial solution
* Prioritize machines based on proximity, urgency, and economic risk
* Incorporating dispatching and relocation
* Benchmark against heuristic policies
» Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3

TU/e



Iterative methods

Approximate policy iteration

29

1.
2.
3.

Choose an initial policy m
Select a subset of states S' € S
Forall h € S": compute the best action a* using simulation given the policy 7, is used after

— a* = arg max{C (hy, ag) + yE™[Q(H;)|ho, aol}, hy € S’
ag €A(ho)
Train a neural network classifier on the constructed data set — induces a policy m4
. Input: feature representation f(h) of a state h € S.
. Output: probability distribution over the action space

If T, improves upon 1y: set Ty = m; and return to step 2, else: terminate

Requires a suitable choice of 7, and S'!

TU/e



Approximate policy iteration

Subset of states S’
* Must depend on 7
* |dea: Construct a data set D = {(h_i*a_ik-1)), a_i*k) | i€ I} containing “optimal” state-
action pairs for the MDP reformulation using simulation.

Initial policy 7,
* Display (some) desired behavior

e Must not ‘self-correct’
* E.g., apartitioned solution will not learn to share resources over the network

* Must be a fast algorithm
* |.e., polynomial time complexity

» Idea: Equip existing greedy/reactive heuristics with state-of-the-art dispatching algorithm

" TU/e



Approximate policy iteration

Initial policies 7,

* Ranking heuristics with sequential dispatching: First assign engineer 1, then engineer 2, ...
* Does not include cooperative behavior

e Ranking heuristics with simultaneous dispatching: Shortest pair first
* Includes suboptimal cooperative behavior

e Ranking heuristics with Hungarian dispatching: Construct and solve an assignment problem

* Includes optimal cooperative behavior
e Assignment problems are solvable in polynomial time complexity

y TU/e



(1
Initial setup

For the initial placing of the
experts, we choose out of the
8568 possible positions, the
best ensuring large coverage
with small response time.

.,
iy

Failure

When the equipment fails,

the closest available expert is

dispatched. If there is no

available expert, then it stays

failed, until an expert

becomes available, and Alert
hospital operation is

disrupted. When an alert is issued, the

closest available expert is

dispatched. If there is no

available expert or the expert

takes too long to reach the

equipment, then it fails. Repositioning

Idle experts are pro-actively

repositioned to be closer to

future failures. Such

repositioning ensures large

coverage with small

response time.

DISPATCHING
EXPERTS

T0 DO
MAINTENANCE

Nowadays surgical operations require advanced
robotic equipment. Such equipment can help
save lives. Unfortunately, such equipment
deteriorates with usage and it can eventually fail.
When it fails, it requires maintenance from an
expert engineer. Until it is maintained, it cannot

be used and hospital operation is disrupted.
Thankfully failures are often predicted before they
happen. When a failure is predicted, we issue an
alert and we plan how to dispatch an expert to do
maintenance with minimal disruption of the
hospital operation. Combining mathematics and
Artificial Intelligence (Al), we design algorithms
for the dispatching of the experts ensuring as few
and as short as possible disruptions at a low cost.
The biggest challenge in designing these
algorithms is the computational complexity as
there are typically hundreds of experts and
thousands of equipment.




Results

Observation

Observation

Observation

NNAgent_genl_(2402329) [l

NNAgent_genl_(2402329)

Y
N

J
Y~ J
‘&0 5

.

NNAgent_genl (2402329)

1 MOVE(S)(20]

(a) Strategic initial positioning.

33

(b) Efficient dispatching.

(c) Tactical repositioning.

TU/e



https://retrospectiverotations.com/publications.html

Approximate policy iteration

Training the neural network classifier
e Split the data set in a training set and a test set

* Minimize training loss L(8) on the training set
* Loss function measures the distance between the neural network policy and the simulation-based
policy for the feature representation of the states in the training set
* Fitting the neural network parameters 6 is an iterative, gradient-based process: In each step, the
gradient of L(6) is estimated with respect to 8. Subsequently, 0 is updated by taking a step in the
opposite direction.

Feature representation

1y | .. av _ua jv 40 P . Lav ua v 0, 6 Lav
f (h) =\ Ly Ny, fl . fl ! 3 fl gla e s UM s TEprs Uy s t]\,{ ) t]\..{ ’ gf\f‘fﬁ. E D%
meM
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Dispatching & Repositioning: Dutch academic hospitals (M35K5-Q1C1)

“

K=5 engineers
N, =2 states
cpy =0 cost PM
cey =0 cost CM
cpr =1 cost DT

cr = 0.05 cost travel

0, € {1, ...,16}
tPM = 4‘

tCM=4

35

time travel
time PM

time CM

Benchmark (Reactive)

11 API (1T: Reactive)

15 API (1,: Reactive)

zzzzzzzzzzzzzzzzzz

9)

Source

65.612 £+ 0.074

63.178 £ 0.070

62.101 + 0.069

zzzzzzzzzzzzzzzzzz



https://retrospectiverotations.com/k-dtmpa/experiments/M35K5Q3C1/M35K5Q3C1.html

Results

An exemplary showcase of learned behavior from a
neural network policy trained via API: Upon dispatching
an engineer to perform corrective maintenance in
Roermond O, the neural network policy repositions an
engineer from Eindhoven © to Tilburg to improve
coverage in the network in anticipation of future alerts
and failures.
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Costs

Time: 0
50 4 Current Location: [1, 3, 4, 6,
Action: [1, 24, 4, 6, 91
40 Reward: 0.00
Cost: 0.05
30 4 Cum. Cost: 0.05
Last Location: [0, 0, 0, 0, 0]
20 Last Action: [0, 0, 0, 0, 0.
M: 3
10 4 m: 0
Cc:1
ol (1] : : : : : ; : ; —Ls
0 50 100 150 200 250 300 350 400 450 500
Observation Alerts
t:0 Decomposed DRL_gen3_(2402329) :
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Sketching the 1dea

Step 1: Solve the single maintainer problem
» Compare API with MDP - Exact method
Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
* Reformulation of the action space
* Choosing a smart, suitable initial solution
* Prioritize machines based on proximity, urgency, and economic risk
* Incorporating dispatching and relocation
* Benchmark against heuristic policies
» Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the single maintainer problem for heterogeneous machines

Key elements
* Incorporate Bayes updating in initial solution

TU/e



Heterogeneous multi-component systems

Component 1 Component 2

.. Updated ..
condition (0) L condition (8)
A parameter prior y

A
p(0]x) o« L(x|0)p(8)

Observed data
added

time time

TU/e



Heterogeneous multi-component systems

Component 1
(marginal)
condition (0)

time

Fort =0
oint
Condition I(J )

Condition 2

Component 2
(marginal)
condition (0)

time

TU/e



Heterogeneous multi-component systems

Component 1
(marginal)
condition (0)

time

Fort =1
oint
Condition I(J )

Condition 2

Component 2
(marginal)
condition (0)
A

time

TU/e



0 Degradation lower bound for neural network PM decision 55 0Degradation lower bound for neural network OPM decision 0
45 118 45 118
40 T 116 40 Saaa: === P
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(a) Heatmap of the minimum degradation level 21 at which (b) Heatmap of the minimum degradation level 21 at which
maintenance is initiated, given ki(t) and t;(t), assuming the maintenance is initiated, given ki (t) and ¢;(t), assuming the
other machine is in the healthy state (acg(t),kg(t),tg(t)) = other machine is in the failed state (acg(t),kg(t),tg(t)) =
(0,0,0). ( S2-pna _ E21s )
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Figure 3: Two policy slices from the best-performing neural network policy for instance 1.1, illustrating the complex

transformation from PM decisions to OPM decisions.
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Instance M &, | pa  CVa ps CVg a /3 b | EM LM STy
CS.1 1 50 | 1.414 0.157 0487 0.234 | 40.696 28.779 8.924 9.405 1 5 0 0.99
CS.2 2 50 | 1.414 0.157 0.487 0.234 | 40.696 28.779 8.924 9405 | 1 & 1 099
CS.3 5 50 | 1.414 0157 0.487 0.234 | 40.696 28.779 8.924 9.405 1 5 1 099
Table 5: Hyperparameter settings and cost structures considered in the case study.
Instance | 70M  7OPM J(mx) J(mg') J(3)
CS.1 40 - 3.146 +0.002 11.071£0.006 2.974 +0.002
CS.2 1 28 11.381 £0.005 26.516 +£0.010 11.558 + 0.005
CSs.3 41 20  26.4054+0.007 65.876+£0.016 28.270 £ 0.007
CS.1 CS.2 CS.3
Table 6: Summary of the heuristic solution calibration results for the case study instances CS.1-3. = ng' ,kan ,le;f. ,ka.
S J(7g) 3.146 +0.002 | 11.38140.005 | 26.405 =+ 0.007
I 3| (mﬁf(f%" (h))) | 3.936+0.003 | 12.663+0.006 | 28.498 + 0.008
3] ~ Lo ¢ ¢L2 (1) 5 of y ,
} g
s} &)

(a) Heatmap of the minimum degradation level 1 at which

maintenance is initiated according to the neural network policy,

given ky(t) and ty(t).

Figure 5: Policy visualization of the best-performing neural network policy for instan
heuristic, illustrating their similarity,

Gen 3

m2 (2 (h 3.804 4 0.003

J (g2 ( fE1(h)) | 3.767+0.003 | 12.527 +0.006 | 28.185 + 0.008

13.009 £ 0.007

29.336 &+ 0.009

Machine age

Machine age

(b) Heatmap of the minimum degradation level xy at which
maintenance is initiated according to the integrated Bayes
heuristic, given k() and ty(t).

neural network policy 7"

CS.1 and the inte;

1 Bayes

Table 7: One-step policy improvement results for case study instances CS.1-3. Gray rows: The performance of the

2 in the Ly setting, trained on the underlying MDP. White rows: The performance of the
neural network policy w,’," applied in the L, setting using the open-loop feedback approach. Bold: Indicates the
lowest cost for each instance under L; across neural network generations.
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