
Optimal Decision-Making under Parameter Uncertainty

STELLA KAPODISTRIA

Summer School Sequential Decision Making 2025

Department of Mathematics and Computer Science

Real-time data-driven maintenance logistics
• Jointly with Joachim Arts, Collin Drent, Melvin

Drent, Willem van Jaarsvelt, Peter Verleijsdonk
• Companies involved: ASML, Philips, NS, Fokker

• Problem setting:
• High-tech systems in a network
• Real-time condition information
• Failures and unavailability are costly
• Maintenance resources are shared over the

network

• Question:
• When to do maintenance?
• How to optimally dispatch real-time the

maintenance resources?

Real-time data-driven maintenance logistics
• Why is it challenging?

• Highly dynamic, stochastic environment
• Under an oracle, the problem reduces to

the traveling multi-maintainer problem with
response-time dependent costs

• Our A(P)I success:
• Our solution accounts for real-time

information
• Our solution is interpretable and near-

optimal
• Our solution improves on heuristic state-of-

the-art dispatching algorithms

Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE () travel

• Strategic location ()

• Machine location ()

• Degradation of a component raises an alert ()

• Machine failure ()

Stella Kapodistria
Sticky Note
Link to animations: https://retrospectiverotations.com/k-dtmpa/k-dtmpa.html

Step 1: Solve the single maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2022.06.044.

Step 2: Solve the multi-maintainer problem for homogeneous machines on a network

https://doi.org/10.1016/j.ejor.2024.05.049.
https://doi.org/10.1016/j.ejor.2025.01.026.

Step 3: Solve the single maintainer problem for heterogeneous machines on a network

https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527_Verleijsdonk_hf.pdf (Chapter 4)

Step 4: Solve the multi-maintainer problem for heterogeneous machines on a network

open problem!

Sketching the idea

https://doi.org/10.1016/j.ejor.2022.06.044
https://doi.org/10.1016/j.ejor.2024.05.049
https://doi.org/10.1016/j.ejor.2025.01.026
https://pubsonline.informs.org/doi/10.1287/msom.2022.1149
https://pure.tue.nl/ws/portalfiles/portal/357485182/20250527_Verleijsdonk_hf.pdf

Title of Presentation – by Insert Header and Footer text6

The challenges of the single component case
iXR: filament

Cost optimal
maintenance

planning

OptimizationPhysical model

▪ Population of components

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time

bang

~phQ&'J, ~---

-----------.j,_X~t-· ~t~:1.......0,_J.,-t l,a,p..ó.J.n:Jd__.B'-"o,,_,,;J,._.1c..,__n,___,,~e~cc.(,jcai...<mc.,..__,l/'--L.,X...,_,t-,....-a----2c..=-=-r--1.Y__,,_' -)-1-------
=1

J< ? y as o-i (>»,,)

- pa@ment art, an A9do -nu» machina

- eeeal halo nu uil f »

f
,,,,,~ / ö+ J 1/L,:; 1/{u, #tlfl , <,,. , d 11ro,flï1l j, x 1..J

___U~l.....i,/t;~) ---;------;;/-- ___.._(L_V -=--------
d

'u-1 *d U!D,flll), -~-!'---------------------

r J

Ca e»boa psj

C

@
.Jol « y z, vyl sol

@
e.·Pol>}Ly)
n 0 "j

7p, %ly< » %y) É

a #. Pr
le.he #er

inzLaat
f c
lack

Y
} e toe +at

si

V l ·)
Vt)

v4 1neon9 , bu±

@) chdl an ony se sf

Ho
2d l pej a ighee ct,1

4 ueor]

, al w"[.j ors.r9 orh

r y",Y) u alo nro»9 'n

()

<ut j Volkom ka usu klok 3da
l Uw'(,) s 4sir9

1

Cost optimal
maintenance

planning

OptimizationPhysical model

▪ Population of components

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time

When to do maintenance?

condition (𝜽) Known from
historical data

𝑋 𝑡 , 𝑡 ≥ 0

time

PAGES 1 & 2 NOTES

When to do maintenance?

Cost optimal
maintenance

planning

OptimizationPhysical model

▪ Heterogeneous population

▪ Condition data to failure

𝑋 𝑡 , 𝑡 ≥ 0

time

Integrated learning and optimizationData with physical
model properties

Cost optimal
maintenance

planning

How to account for a heterogeneous population in
maintenance planning?

Integrated condition replacement
policy

𝑝 𝜽 𝒙 ∝ 𝐿(𝒙|𝜽)𝑝(𝜽)

Updated
parameter prior

Observed data
added

Traditional condition replacement
policy

time

condition (𝜽)

time

condition (𝜽)
𝜽

Known from
historical data

PAGES 3-5 NOTES

Rohe psj1 4 f

-}'o».fl.-3]/@. • «6) Jo
FM2»,M. 1 +,8) . Pw.»I A.3)2á,»

u 6ama (a+ »t)

-At hoe Hl, wieejun el.ahaj-yov. Ytbeqecmhei f Hao exama)

)

9 ·-l
7

Bta,)
y +6

O} cot la co sf tla (ampound [Aon peen we seer J

l eueub seq /kl, onl Joe eod ceut o jam zeal+ohs
ha+l a numb

T orr

be nu&d to het

Bea,)

A

If

,@

and
,,

pet (ar, 6+2y..

duueo tla pdale----gj

Th is due ts 1) I

tta fad lal se brave o as
±)-) and

h Hg same do#a lat
eoity andepo cscatI

+e #lsl j-mp
99gr.Ty.)

wv(4t +! $
I

xt i -
, 27,

à - - - - - - - -- i=t« I

' '
..

, I I

I ,yr I ' (I
t. ' I

! t ¥ (. , ' \I a ~ ·~ 'W ~ , - •. . . , . » . ve I,, +nu.
"n t Ni+,+«I Er

x dvrko Hug net et an &set

al ea av hon el le, i ju dl e baa ~ 5ze o)

all mom»l af eseah %y

Ha open4ijI

Y.:

an1à
7

.
ii2e

loec, it uf uent t» only kep +al el &l ad 2Y aa ±
tl

w#,++1)

0.0.o

r 2

(Lt)

349/9) 4 (at, bry)

3) {/ 0-3444 Pesso)

2eahve binomad (o,p)
T7

Hackl>rs a

Optimal policy

𝜉 = 𝜉 =

𝜉 = 𝜉 =

Optimal policy

Let {𝑋𝑡, 𝑡 ≥ 0} denote the stochastic process that drives the condition with unkown parameters 𝜽.

Consider 𝑉 ℎ𝑡, 𝑠𝑡, 𝑡 with ℎ𝑡 = (𝑠0, 𝑎1 , 𝑠1, 𝑎2 ,… , (𝑠𝑡−1, 𝑎𝑡))

Step 1: State space collapse 𝑉 ℎ𝑡, 𝑠𝑡, 𝑡 ↦ 𝑉 ෢𝜽𝒕, 𝑠𝑡, 𝑡 with ෢𝜽𝒕 denoting the efficient statistic

E.g., if {𝑋𝑡, 𝑡 ≥ 0} is CPP then ℎ𝑡, 𝑠𝑡, 𝑡 ↦ 𝑛, 𝑥𝑡, 𝑡
Step 2: Stochastic ordering of {𝑋𝑡, 𝑡 ≥ 0} with respect to ෢𝜽𝒕, 𝑠𝑡, 𝑡

E.g., if {𝑋𝑡, 𝑡 ≥ 0} is CPP, then non-increasing in t and non-decreasing in x

Step 3: Properties of the policy with respect to ෢𝜽𝒕, 𝑠𝑡, 𝑡

Building blocks of the theory

Cost savings
Oracle < Bayes cost gap < Myopic 𝜽 updating cost gap < Historical 𝜽 cost gap

condition (𝜽)

“Many small jumps”

time

condition (𝜽)

“Few large jumps”

time

Cost savings
Oracle < Bayes cost gap < Myopic 𝜽 updating cost gap < Historical 𝜽 cost gap

Intermittent degradation signal gap = 15%
Imperfect degradation signal gap = 6%

condition (𝜽)

“Many small jumps”

time

condition (𝜽)

“Few large jumps”

time

Title of Presentation – by Insert Header and Footer text17

The challenges of the network case

Goal: Maintenance planning using IoT data in a network of machines

• Field service engineers FSE () travel in a network of machines

• Strategic location ()

• Machine location ()

• Degradation of a machine raises an alert ()

• Machine failure ()

Goal: Maintenance planning using IoT data in a network of multi-component machines

Challenges

▪ Traveling salesman problem

▪ Real time scheduling problem

▪ Maintenance optimization problem

Preventive/Corrective/Downtime cost and degradation

High-tech
equipment

Enable exact
optimization
for small
instances

Assumptions
based on
literature

Online
decision
making

Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintener problem
Key elements
• Reformulation of the action space
• Choosing a smart, suitable initial solution

• Incorporating dispatching and relocation
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea

Iterative methods

21

Approximate policy iteration
1. Choose an initial policy 𝜋0
2. Select a subset of states 𝑆′ ⊆ 𝑆
3. For all ℎ ∈ 𝑆′: compute the best action 𝑎∗ using simulation given the policy 𝜋0 is used after

⇾ 𝑎∗ = arg max
𝑎0 ∈𝐴(ℎ0)

𝐶 ℎ0, 𝑎0 + 𝛾𝔼𝜋0 𝑄 𝐻1 ℎ0, 𝑎0 , ℎ0 ∈ 𝑆′

4. Train a neural network classifier on the constructed data set → induces a policy 𝜋1
• Input: feature representation 𝑓(ℎ) of a state ℎ ∈ 𝑆.
• Output: probability distribution over the action space

5. If 𝜋1 improves upon 𝜋0: set 𝜋0 = 𝜋1 and return to step 2, else: terminate

Requires a suitable choice of 𝜋0 and 𝑆′!

Approximate policy iteration

22

Subset of states 𝑆′
• Must depend on 𝜋0
• Idea: Given 𝜋_0, construct a data set 𝒟 = {(ℎ, 𝑎𝜋0

∗)} containing “optimal”, “most-likely”
state-action pairs for the MDP reformulation using simulation.

Initial policy 𝜋0
• Display (some) desired behavior
• Must be a fast algorithm

• I.e., polynomial time complexity
• Idea: Equip existing greedy/reactive heuristics

• Nearest neighbour
• Greedy based on distance/cost/time
• Deterministic problem by first order approximation

Approximate policy iteration

23

Training the neural network classifier
• Split the data set in a training set and a test set
• Minimize (cross-entropy) training loss 𝐿 𝜃 on the training set

• Loss function measures the distance between the neural network policy and the simulation-based
policy for the feature representation of the states in the training set

• Fitting the neural network parameters 𝜃 is an iterative, gradient-based process: In each step, the
gradient of 𝐿 𝜃 is estimated with respect to 𝜃. Subsequently, 𝜃 is updated by taking a step in the
opposite direction.

Feature representation

Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintener problem
Key elements
• Reformulation of the action space
• Choosing a smart, suitable initial solution

• Incorporating dispatching and relocation
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea

Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE () travel

• Strategic location ()

• Machine location ()

• Degradation of a component raises an alert ()

• Machine failure ()

Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea

27

Single maintainer (K=1)
• Developed heuristics yield competitive policies
• Deep reinforcement learning outperforms the heuristics

Dispatching & repositioning (K>1)

General insights
✓API can solve single maintainer instances up to optimality

within few iterations and produces state-of-the-art improved
policies for multi-maintainer instances.

✓Smart dispatching heuristics are superior initial solutions for
solving multi-maintainer instances.

✓The trained policies are robust against removing an asset or
engineer or yield a suitable initial solution.

✓Deep reinforcement learning can be applied to industrial cases
to provide cost-efficient and scalable solutions.

Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the multi-component system
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea

Iterative methods

29

Approximate policy iteration
1. Choose an initial policy 𝜋0
2. Select a subset of states 𝑆′ ⊆ 𝑆
3. For all ℎ ∈ 𝑆′: compute the best action 𝑎∗ using simulation given the policy 𝜋0 is used after

⇾ 𝑎∗ = arg max
𝑎0 ∈𝐴(ℎ0)

𝐶 ℎ0, 𝑎0 + 𝛾𝔼𝜋0 𝑄 𝐻1 ℎ0, 𝑎0 , ℎ0 ∈ 𝑆′

4. Train a neural network classifier on the constructed data set → induces a policy 𝜋1
• Input: feature representation 𝑓(ℎ) of a state ℎ ∈ 𝑆.
• Output: probability distribution over the action space

5. If 𝜋1 improves upon 𝜋0: set 𝜋0 = 𝜋1 and return to step 2, else: terminate

Requires a suitable choice of 𝜋0 and 𝑆′!

Approximate policy iteration

30

Subset of states 𝑆′
• Must depend on 𝜋0
• Idea: Construct a data set 𝒟 = {(ℎ_𝑖^(𝑎_𝑖^(𝑘−1)), 𝑎_𝑖^𝑘) | 𝑖∈ I} containing “optimal” state-

action pairs for the MDP reformulation using simulation.

Initial policy 𝜋0
• Display (some) desired behavior
• Must not ‘self-correct’

• E.g., a partitioned solution will not learn to share resources over the network
• Must be a fast algorithm

• I.e., polynomial time complexity
• Idea: Equip existing greedy/reactive heuristics with state-of-the-art dispatching algorithm

Approximate policy iteration

31

Initial policies 𝜋0

• Ranking heuristics with sequential dispatching: First assign engineer 1, then engineer 2, …
• Does not include cooperative behavior

• Ranking heuristics with simultaneous dispatching: Shortest pair first
• Includes suboptimal cooperative behavior

• Ranking heuristics with Hungarian dispatching: Construct and solve an assignment problem
• Includes optimal cooperative behavior
• Assignment problems are solvable in polynomial time complexity

33

Results

https://retrospectiverotations.com/publications.html

Approximate policy iteration

34

Training the neural network classifier
• Split the data set in a training set and a test set
• Minimize training loss 𝐿 𝜃 on the training set

• Loss function measures the distance between the neural network policy and the simulation-based
policy for the feature representation of the states in the training set

• Fitting the neural network parameters 𝜃 is an iterative, gradient-based process: In each step, the
gradient of 𝐿 𝜃 is estimated with respect to 𝜃. Subsequently, 𝜃 is updated by taking a step in the
opposite direction.

Feature representation

35

Dispatching & Repositioning: Dutch academic hospitals (M35K5-Q1C1)

𝑀 = 35 assets

𝐾 = 5 engineers

𝑁𝑚 ≡ 2 states

c𝑃𝑀 = 0 cost PM

c𝐶𝑀 = 0 cost CM

c𝐷𝑇 = 1 cost DT

c𝑇 = 0.05 cost travel

𝜃𝑖𝑗 ∈ {1, … , 16} time travel

t𝑃𝑀 = 4 time PM

t𝐶𝑀 = 4 time CM

Policy Performance

Benchmark (Reactive) 65.612 ± 0.074

𝜋1 API (𝜋0: Reactive) 63.178 ± 0.070

𝜋2 API (𝜋0: Reactive) 62.101 ± 0.069

⇒ 5.35% improvement!

Source

https://retrospectiverotations.com/k-dtmpa/experiments/M35K5Q3C1/M35K5Q3C1.html

36

Results

An exemplary showcase of learned behavior from a
neural network policy trained via API: Upon dispatching
an engineer to perform corrective maintenance in
Roermond ☉, the neural network policy repositions an
engineer from Eindhoven ☉ to Tilburg to improve
coverage in the network in anticipation of future alerts
and failures.

Goal: Maintenance planning using IoT data in a network

• Field service engineers FSE () travel

• Strategic location ()

• Machine location ()

• Degradation of a component raises an alert ()

• Machine failure ()

Step 1: Solve the single maintainer problem
➢ Compare API with MDP - Exact method

Solve exactly MDP for small problems

Step 2: Solve the multi-maintainer problem for homogeneous machines
Key elements
• Reformulation of the action space
• Choosing a smart, suitable initial solution

• Prioritize machines based on proximity, urgency, and economic risk
• Incorporating dispatching and relocation

• Benchmark against heuristic policies
➢ Robust against network modifications (removing asset or engineer) or yield a suitable initial solution

Step 3: Solve the single maintainer problem for heterogeneous machines
Key elements
• Incorporate Bayes updating in initial solution

Sketching the idea

Heterogeneous multi-component systems

Component 2

𝑝 𝜽 𝒙 ∝ 𝐿(𝒙|𝜽)𝑝(𝜽)

Updated
parameter prior

Observed data
added

Component 1

time

condition (𝜽)

time

condition (𝜽)

Heterogeneous multi-component systems

Component 2
(marginal)

Component 1
(marginal)

time

condition (𝜽)

time

condition (𝜽)

For 𝑡 = 0
(joint)

Condition 2

Condition 1

Heterogeneous multi-component systems

Component 2
(marginal)

Component 1
(marginal)

time

condition (𝜽)

time

condition (𝜽)

For 𝑡 = 1
(joint)

Condition 2

Condition 1

Optimal Decision-Making under Parameter Uncertainty

STELLA KAPODISTRIA

Summer School Sequential Decision Making 2025

Department of Mathematics and Computer Science

