Planning and Scheduling of Semi-Urgent Surgeries

Maartje E. Zonderland ${ }^{1,2}$
Richard J. Boucherie ${ }^{1}$
Nelly Litvak ${ }^{1}$
Carmen L.A.M. Vleggeert-Lankamp ${ }^{3}$
${ }^{1}$ Stochastic Operations Research, University of Twente
${ }^{2}$ Division I, Leiden University Medical Center
${ }^{3}$ Department of Neurosurgery, Leiden University Medical Center

Background

- Surgical department
- Three surgery types:
\rightarrow Elective (planned in advance)
\rightarrow Urgent (within 24 hours)
\rightarrow Semi-urgent (within 1 or 2 weeks)
- Consider regularly scheduled hours

Motivation

- (Semi-)Urgent surgeries pose uncertain demand on resources
- Urgent surgeries usually performed in overtime or at separate OR
\rightarrow Not taken into account
- Semi-urgent surgeries may not be performed in overtime \rightarrow Allocate part of regular OR hours to these surgeries

Very little: many elective patients canceled

University of Twente
Enschede - The Netherlands

Contents of this Talk

- Determine optimal amount of OR time to allocate to semi-urgent surgeries
\rightarrow Queuing model
- Determine when semi-urgent surgeries should be scheduled \rightarrow Markov decision model

Case Study - Introduction

- Case to illustrate working of models
- Actual data obtained at Leiden University Medical Center
- Neurosurgery department
- 8 OR sessions per week
- 40% of all incoming surgeries is classified semi-urgent

Queuing Model

- Determine optimal amount of OR time to allocate to semi-urgent surgeries
- Each semi-urgent surgery has estimated duration 1,2,..,K slots
- Model semi-urgent slot arrivals as a compound Poisson process
- Each OR session has duration K slots
- Total number of slots available (M) = \# OR sessions * K

Queuing Model

- Total number of slots available (M) = \# OR sessions * K
- Allocate fraction (S) of M to semi-urgent slots
- Slotted queuing model in discrete time

Queuing Model

- Note that
\rightarrow \# of canceled elective slots $\left(N_{C}\right)$ depends on S
\rightarrow \# of empty OR slots (N_{E}) depends on S

Queuing Model

- Note that
\rightarrow \# of canceled elective slots $\left(N_{C}\right)$ depends on S
\rightarrow \# of empty OR slots (N_{E}) depends on S

University of Twente

Queuing Model

- Use queuing model to determine $\mathrm{E}\left[\mathrm{N}_{\mathrm{C}}\right]$ and $\mathrm{E}\left[\mathrm{N}_{\mathrm{E}}\right]$ for each S
- Assign cost C_{C} to canceled elective slot
- Assign cost C_{E} to empty OR slot
- Find S^{*} that miminizes expected total cost:

$$
\mathrm{E}\left[\mathrm{C}_{\mathrm{T}}\right]=\mathrm{E}\left[\mathrm{~N}_{\mathrm{C}}\right]^{*} \mathrm{C}_{\mathrm{C}}+\mathrm{E}\left[\mathrm{~N}_{\mathrm{E}}\right] \mathrm{C}_{\mathrm{E}}
$$

- S^{*} is the optimal number of slots to allocate to semi-urgent surgeries, given C_{C} and C_{E}

Case Study - Queuing Model

- Apply model to case study of neurosurgery department
- Total number of slots available (M) = 8*3 = 24
- On average 5.5 semi-urgent surgeries arrive per week
- $\mathrm{P}(1$ slot surgery) $=0.53$
- $\mathrm{P}(2$ slot surgery) $=0.20$
- $P(3$ slot surgery $)=0.27$
- $\mathrm{S}_{\text {min }}=$ expected number of semi-urgent slot arrivals $=9.6$ \rightarrow Allocate at least 10 slots to obtain a stable system

Case Study - Queuing Model

Case Study - Queuing Model

- Optimal value of S^{*} depends on choice of C_{C} and C_{E}
- If $\left(C_{C}, C_{E}\right)=(1,1)$

$$
\rightarrow \mathrm{S}^{*}=13\left(\mathrm{E}\left[\mathrm{C}_{\mathrm{T}}\right]=4.77\right)
$$

- If $\left(C_{C}, C_{E}\right)=(1,10)$

$$
\rightarrow S^{*}=11\left(E\left[C_{T}\right]=19.42\right)
$$

- If $\left(C_{C}, C_{E}\right)=(10,1)$ $\rightarrow S^{*}=17(E[C T]=9.45)$
- Note that $\mathrm{S}^{*}>\mathrm{S}_{\text {min }}$ in all cases!

Markov Decision Model

- Two types of semi-urgent surgeries:
\rightarrow Surgery within one week
\rightarrow Surgery within two weeks
- Schedule one-week semi-urgent surgeries this week
- Two-week semi-urgent surgeries can be postponed one week
- When to schedule two-week semi-urgent surgeries?

Markov Decision Model

- Continue with slotted approach
- Schedule up to S*?

Markov Decision Model

- Or more?
- Drawback: canceling of elective slots

Markov Decision Model

- Then just up to S*? *
- Risk of postponement: one-week semi-urgent surgeries performed in overtime

2 week slots from last week -

Markov Decision Model

- Develop Markov Decision Model
- Determine for each state (combination of number of one- and two-week semi-urgent slots waiting) an action (how many two-week slots to plan this week)
- Use costs and related S^{*} calculated in queuing model
- Introduce additional costs for overflow of semi-urgent slots
- Minimize expected total discounted costs

Case Study - Markov Decision Model

- Trivial problem?
- More than 1000 states for neurosurgery case study!
- Consider $\left(C_{C}, C_{E}\right)=(1,1) ;(1,10) ;(10,1)$
- Graphic representation of strategies

Case Study - Markov Decision Model

Case Study - Markov Decision Model

Case Study - Markov Decision Model

Conclusion

- Determine with queuing model how much OR time should be allocated to semi-urgent surgeries
\rightarrow Optimal solution depends highly on costs
\rightarrow Dangerous to focus only on average behavior
- Use Markov decision model to decide upon actual scheduling
\rightarrow Simplifies scheduling job

Questions?

m.e.zonderland@lumc.nl

University of Twente

