
Computation with MIP and beyond

Andrea Lodi
University of Bologna, Italy

andrea.lodi@unibo.it

January 12, 2010 @ Lunteren, The Netherlands

A. Lodi, Computation in MIP



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

A. Lodi, Computation in MIP 1



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

(Unfortunately, the talk does not cover LP advances.)

A. Lodi, Computation in MIP 1



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

(Unfortunately, the talk does not cover LP advances.)

• The implicit question the talk tries to answer is:

what does a general-purpose MIP solver contain/do?

A. Lodi, Computation in MIP 1



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

(Unfortunately, the talk does not cover LP advances.)

• The implicit question the talk tries to answer is:

what does a general-purpose MIP solver contain/do?

• The talk is organized as follows:

A. Lodi, Computation in MIP 1



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

(Unfortunately, the talk does not cover LP advances.)

• The implicit question the talk tries to answer is:

what does a general-purpose MIP solver contain/do?

• The talk is organized as follows:

1. MIP solvers, Evolution:

(a) A performance perspective

(b) A modeling/application perspective

A. Lodi, Computation in MIP 1



Outline, Assumptions and Notation

• We consider a general Mixed Integer Program in the form:

min{c
T
x : Ax ≥ b, x ≥ 0, xj integer, j ∈ I} (1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by

iteratively solving the LP relaxations through a general-purpose LP solver.

(Unfortunately, the talk does not cover LP advances.)

• The implicit question the talk tries to answer is:

what does a general-purpose MIP solver contain/do?

• The talk is organized as follows:

1. MIP solvers, Evolution:

(a) A performance perspective

(b) A modeling/application perspective

2. MIP solvers, Challenges:

(a) A performance perspective

(b) A modeling/application perspective

A. Lodi, Computation in MIP 1



MIP Evolution, early days

• Despite quite some work on basically all aspects of IP and in particular on cutting planes, the

early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP

solvers used within good branch-and-bound schemes.

A. Lodi, Computation in MIP 2



MIP Evolution, early days

• Despite quite some work on basically all aspects of IP and in particular on cutting planes, the

early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP

solvers used within good branch-and-bound schemes.

• Remarkable exceptions are:

– 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs

– 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs

A. Lodi, Computation in MIP 2



MIP Evolution, early days

• Despite quite some work on basically all aspects of IP and in particular on cutting planes, the

early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP

solvers used within good branch-and-bound schemes.

• Remarkable exceptions are:

– 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs

– 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs

• When did the early days end?

Or equivalently, when did the current generation of MIP solvers appear?

A. Lodi, Computation in MIP 2



MIP Evolution, early days

• Despite quite some work on basically all aspects of IP and in particular on cutting planes, the

early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP

solvers used within good branch-and-bound schemes.

• Remarkable exceptions are:

– 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs

– 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs

• When did the early days end?

Or equivalently, when did the current generation of MIP solvers appear?

• It looks like a major (crucial) step to get to nowadays MIP solvers has been the ultimate proof

that cutting plane generation – in conjunction with branching – could work in general, i.e.,

after the success in the TSP context:

– 1994 Balas, Ceria & Cornuéjols: lift-and-project

– 1996 Balas, Ceria, Cornuéjols & Natraj: gomory cuts revisited

A. Lodi, Computation in MIP 2



MIP Evolution, Cplex numbers

• Bob Bixby & Tobias Achterberg performed the following interesting experiments which

compare all Cplex versions starting from Cplex 1.2, the first one having MIP capability.

A. Lodi, Computation in MIP 3



MIP Evolution, Cplex numbers

• Bob Bixby & Tobias Achterberg performed the following interesting experiments which

compare all Cplex versions starting from Cplex 1.2, the first one having MIP capability.

• 1,734 MIP instances, time limit of 30,000 CPU seconds, computing times as geometric means

normalized wrt Cplex 11.0 (equivalent if within 10%).

Cplex

versions year better worse time

11.0 2007 0 0 1.00

10.0 2005 201 650 1.91

9.0 2003 142 793 2.73

8.0 2002 117 856 3.56

7.1 2001 63 930 4.59

6.5 1999 71 997 7.47

6.0 1998 55 1060 21.30

5.0 1997 45 1069 22.57

4.0 1995 37 1089 26.29

3.0 1994 34 1107 34.63

2.1 1993 13 1137 56.16

1.2 1991 17 1132 67.90

A. Lodi, Computation in MIP 3



MIP Evolution, Cplex numbers (cont.d)

• On a slightly larger set of 1,852 MIPs (including some models in which older versions

encountered numerical troubles), the experiment highlights the version-to-version improvement

in the number of solved problems.

A. Lodi, Computation in MIP 4



MIP Evolution, Cplex numbers (cont.d)

• On a slightly larger set of 1,852 MIPs (including some models in which older versions

encountered numerical troubles), the experiment highlights the version-to-version improvement

in the number of solved problems.

Cplex # % v-to-v %

versions year optimal optimal improvement

11.0 2007 1,243 67.1% 7.8%

10.0 2005 1,099 59.3% 3.5%

9.0 2003 1,035 55.9% 2.6%

8.0 2002 987 53.3% 2.5%

7.1 2001 941 50.8% 4.3%

6.5 1999 861 46.5% 13.4%

6.0 1998 613 33.1% 1.0%

5.0 1997 595 32.1% 1.8%

4.0 1995 561 30.3% 4.4%

3.0 1994 479 25.9% 6.2%

2.1 1993 365 19.7% 4.7%

1.2 1991 278 15.0% —

A. Lodi, Computation in MIP 4



MIP Evolution, Cplex numbers (cont.d)

• On a slightly larger set of 1,852 MIPs (including some models in which older versions

encountered numerical troubles), the experiment highlights the version-to-version improvement

in the number of solved problems.

Cplex # % v-to-v %

versions year optimal optimal improvement

11.0 2007 1,243 67.1% 7.8%

10.0 2005 1,099 59.3% 3.5%

9.0 2003 1,035 55.9% 2.6%

8.0 2002 987 53.3% 2.5%

7.1 2001 941 50.8% 4.3%

6.5 1999 861 46.5% 13.4%

6.0 1998 613 33.1% 1.0%

5.0 1997 595 32.1% 1.8%

4.0 1995 561 30.3% 4.4%

3.0 1994 479 25.9% 6.2%

2.1 1993 365 19.7% 4.7%

1.2 1991 278 15.0% —

• The key feature of Cplex v. 6.5 was indeed extensive cutting plane generation.

A. Lodi, Computation in MIP 4



MIP Evolution, Cutting Planes

Figure 1: Strengthening the LP relaxation by cutting planes.

A. Lodi, Computation in MIP 5



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

A. Lodi, Computation in MIP 6



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

– Cutting plane generation:

Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, 0/1 cuts, . . .

A. Lodi, Computation in MIP 6



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

– Cutting plane generation:

Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, 0/1 cuts, . . .

– Sophisticated branching strategies:

strong branching, pseudo-cost branching, diving and hybrids

A. Lodi, Computation in MIP 6



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

– Cutting plane generation:

Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, 0/1 cuts, . . .

– Sophisticated branching strategies:

strong branching, pseudo-cost branching, diving and hybrids

– Primal heuristics:

rounding heuristics (from easy to complex), local search, . . .

A. Lodi, Computation in MIP 6



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

– Cutting plane generation:

Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, 0/1 cuts, . . .

– Sophisticated branching strategies:

strong branching, pseudo-cost branching, diving and hybrids

– Primal heuristics:

rounding heuristics (from easy to complex), local search, . . .

– Preprocessing:

probing, bound strengthening, propagation

A. Lodi, Computation in MIP 6



MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the

first 50 years of Integer Programming:

– Cutting plane generation:

Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, 0/1 cuts, . . .

– Sophisticated branching strategies:

strong branching, pseudo-cost branching, diving and hybrids

– Primal heuristics:

rounding heuristics (from easy to complex), local search, . . .

– Preprocessing:

probing, bound strengthening, propagation

• Moreover, the MIP computation has reached such an effective and stable quality to allow the

solution of sub-MIPs in the algorithmic process, the MIPping approach. [Fischetti & Lodi]

These sub-MIPs are solved both for cutting plane generation and in the primal heuristic context.

A. Lodi, Computation in MIP 6



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

A. Lodi, Computation in MIP 7



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

Nowadays MIP solvers include useful tools for complex algorithmic design and data and model

analysis. Some of them are:

A. Lodi, Computation in MIP 7



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

Nowadays MIP solvers include useful tools for complex algorithmic design and data and model

analysis. Some of them are:

– automatic tuning of the parameters:

the number of parameters (corresponding to different algorithmic options) makes the

hand-tuning complex but it guarantees great flexibility

A. Lodi, Computation in MIP 7



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

Nowadays MIP solvers include useful tools for complex algorithmic design and data and model

analysis. Some of them are:

– automatic tuning of the parameters:

the number of parameters (corresponding to different algorithmic options) makes the

hand-tuning complex but it guarantees great flexibility

– multiple solutions:

allow flexibility and support for decision making and, as side effect, improve primal heuristics

A. Lodi, Computation in MIP 7



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

Nowadays MIP solvers include useful tools for complex algorithmic design and data and model

analysis. Some of them are:

– automatic tuning of the parameters:

the number of parameters (corresponding to different algorithmic options) makes the

hand-tuning complex but it guarantees great flexibility

– multiple solutions:

allow flexibility and support for decision making and, as side effect, improve primal heuristics

– detection of sources of infeasibility in the models:

real-world models are often over constrained and sources of infeasibility must be removed

[Amaldi; Chinneck]

A. Lodi, Computation in MIP 7



MIP Evolution, a modeling viewpoint

• Solving a MIP to optimality is only one aspect of a using MIP solver for applications,

sometimes not the most important one.

Nowadays MIP solvers include useful tools for complex algorithmic design and data and model

analysis. Some of them are:

– automatic tuning of the parameters:

the number of parameters (corresponding to different algorithmic options) makes the

hand-tuning complex but it guarantees great flexibility

– multiple solutions:

allow flexibility and support for decision making and, as side effect, improve primal heuristics

– detection of sources of infeasibility in the models:

real-world models are often over constrained and sources of infeasibility must be removed

[Amaldi; Chinneck]

– callbacks:

allow flexibility to accommodate the user code so as to take advantage of specific knowledge

A. Lodi, Computation in MIP 7



MIP Challenges

• Overall, a big challenge from both performance and modeling viewpoints is accuracy which is a

new issue, i.e., an old issue that starts to be very important after realizing that MIP solvers can

now really solve the problems.

A. Lodi, Computation in MIP 8



MIP Challenges

• Overall, a big challenge from both performance and modeling viewpoints is accuracy which is a

new issue, i.e., an old issue that starts to be very important after realizing that MIP solvers can

now really solve the problems.

• Some difficult MIPs:

– bad modeling:

∗ the model has numerical difficulties

∗ the MIP modeling capability is not sufficient wrt the real problem

– large problems

– knapsack constraints with huge coefficients and general integer variables with large bounds

– scheduling models with disjunctive constraints and fundamental continuous variables

A. Lodi, Computation in MIP 8



MIP Challenges, performance

• The performance of MIP solvers can/must be improved in many different directions.

A. Lodi, Computation in MIP 9



MIP Challenges, performance

• The performance of MIP solvers can/must be improved in many different directions.

Among them, my favorite ones are:

– branching vs cutting

– sophisticated techniques for general integer and continuous variables

– performance variability

– revisiting good “old” methods

– cutting planes exploitation

– symmetric MIPs

A. Lodi, Computation in MIP 9



MIP Challenges: branching vs cutting

x∗
αTx = α0 αTx = α0 + 1

-�

/

R

x∗

first wisdom

x∗,1 x∗,2

βTx = β0

W

W

/

@
@

@
@

@
@

@
@

@
@

@
@

@@R

x∗

βTx = β0

αTx = α0
� -

B
BN

N

αTx = α0 + 1

second wisdom

A. Lodi, Computation in MIP 10



MIP Challenges, branching vs cutting (cont.d)

• The previous slide highlights a possibility of using traditional cutting plane theory in the

branching context. [Karamanov & Cornuéjols]

A. Lodi, Computation in MIP 11



MIP Challenges, branching vs cutting (cont.d)

• The previous slide highlights a possibility of using traditional cutting plane theory in the

branching context. [Karamanov & Cornuéjols]

• It seems that a better coordination of these two fundamental ingredients of the MIP solvers is

crucial for strong improvements.

A. Lodi, Computation in MIP 11



MIP Challenges, branching vs cutting (cont.d)

• The previous slide highlights a possibility of using traditional cutting plane theory in the

branching context. [Karamanov & Cornuéjols]

• It seems that a better coordination of these two fundamental ingredients of the MIP solvers is

crucial for strong improvements.

• In the context of hard knapsack constraints branching on variables is not effective while (pure)

basis reduction methods have proved to be very powerful. [Eisenbrand; Aardal; Pataki; Weismantel; . . . ]

A. Lodi, Computation in MIP 11



MIP Challenges, branching vs cutting (cont.d)

• The previous slide highlights a possibility of using traditional cutting plane theory in the

branching context. [Karamanov & Cornuéjols]

• It seems that a better coordination of these two fundamental ingredients of the MIP solvers is

crucial for strong improvements.

• In the context of hard knapsack constraints branching on variables is not effective while (pure)

basis reduction methods have proved to be very powerful. [Eisenbrand; Aardal; Pataki; Weismantel; . . . ]

• On the other hand, a tight integration of basis reduction techniques within MIP solvers has not

yet been achieved. One possibility for such an integration is the use of partial reformulations

but an intriguing option is exploiting these reformulations to generate cuts in the original space

of variables. [Aardal & Wolsey]

A. Lodi, Computation in MIP 11



MIP Challenges, branching vs cutting (cont.d)

• The previous slide highlights a possibility of using traditional cutting plane theory in the

branching context. [Karamanov & Cornuéjols]

• It seems that a better coordination of these two fundamental ingredients of the MIP solvers is

crucial for strong improvements.

• In the context of hard knapsack constraints branching on variables is not effective while (pure)

basis reduction methods have proved to be very powerful. [Eisenbrand; Aardal; Pataki; Weismantel; . . . ]

• On the other hand, a tight integration of basis reduction techniques within MIP solvers has not

yet been achieved. One possibility for such an integration is the use of partial reformulations

but an intriguing option is exploiting these reformulations to generate cuts in the original space

of variables. [Aardal & Wolsey]

• Finally, branching on appropriate disjunctions has been recently proposed in the context of

highly symmetric MIPs. [Ostrowsky, Linderoth, Rossi & Smriglio]

A. Lodi, Computation in MIP 11



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

• Another example is associated with the models in which continuous variables are important: for

those variables MIP solvers do not do much (heuristics, strengthening, . . . ).

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

• Another example is associated with the models in which continuous variables are important: for

those variables MIP solvers do not do much (heuristics, strengthening, . . . ).

• A (urgent) MIP challenge is definitely dealing with general integer and continuous variables

with special-purpose techniques.

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

• Another example is associated with the models in which continuous variables are important: for

those variables MIP solvers do not do much (heuristics, strengthening, . . . ).

• A (urgent) MIP challenge is definitely dealing with general integer and continuous variables

with special-purpose techniques.

• Cutting plane generation has been a key step for the success of MIP solvers but: are we using

cuts in the best way?

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

• Another example is associated with the models in which continuous variables are important: for

those variables MIP solvers do not do much (heuristics, strengthening, . . . ).

• A (urgent) MIP challenge is definitely dealing with general integer and continuous variables

with special-purpose techniques.

• Cutting plane generation has been a key step for the success of MIP solvers but: are we using

cuts in the best way?By far not!

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• A very important class of MIPs is 0/1 IPs. Many of the sophisticated techniques already

discussed have been originally proposed for this class and eventually extended to general MIPs.

• For example, branching on variables is particularly natural and effective in the 0/1 case while it

is not when general integer variables play a central role.

• Another example is associated with the models in which continuous variables are important: for

those variables MIP solvers do not do much (heuristics, strengthening, . . . ).

• A (urgent) MIP challenge is definitely dealing with general integer and continuous variables

with special-purpose techniques.

• Cutting plane generation has been a key step for the success of MIP solvers but: are we using

cuts in the best way?By far not!

• Fundamental questions about the use of cutting planes remain open:

– stabilization issues

– cut selection

– cut interaction

– correlation within rounds of cuts

A. Lodi, Computation in MIP 12



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

• On the negative side, finding a (near-)optimal solution very early in the search tree explicitly

improves the quality of the primal bound but might sometimes hurt in proving optimality (or at

least does not help).

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

• On the negative side, finding a (near-)optimal solution very early in the search tree explicitly

improves the quality of the primal bound but might sometimes hurt in proving optimality (or at

least does not help).

• This is an example of what we call performance variability: some good features that might not

be monotonically helpful.

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

• On the negative side, finding a (near-)optimal solution very early in the search tree explicitly

improves the quality of the primal bound but might sometimes hurt in proving optimality (or at

least does not help).

• This is an example of what we call performance variability: some good features that might not

be monotonically helpful.

A deeper understanding through sophisticated testing techniques is needed. [Hooker; McGeoch; Margot]

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

• On the negative side, finding a (near-)optimal solution very early in the search tree explicitly

improves the quality of the primal bound but might sometimes hurt in proving optimality (or at

least does not help).

• This is an example of what we call performance variability: some good features that might not

be monotonically helpful.

A deeper understanding through sophisticated testing techniques is needed. [Hooker; McGeoch; Margot]

• The negative example suggests an additional very crucial question: besides avoiding good primal

solutions hurting the optimality proof, how can we use them to have instead a strong speed up?

A. Lodi, Computation in MIP 13



MIP Challenges, performance (cont.d)

• The interaction of key ingredients presented before has side effects: positive and negative ones.

• On the positive side, improvements in LP performance explicitly speed up node throughput, but

implicitly help because one can now do more strong branching and MIPping.

• On the negative side, finding a (near-)optimal solution very early in the search tree explicitly

improves the quality of the primal bound but might sometimes hurt in proving optimality (or at

least does not help).

• This is an example of what we call performance variability: some good features that might not

be monotonically helpful.

A deeper understanding through sophisticated testing techniques is needed. [Hooker; McGeoch; Margot]

• The negative example suggests an additional very crucial question: besides avoiding good primal

solutions hurting the optimality proof, how can we use them to have instead a strong speed up?

• Good “old” methods have been rediscovered and revisited during the years and it is hard to

believe that we understand them fully, at least computationally. Recently:

– strong Benders cutting planes [Fischetti, Salvagnin & Zanette],

– lexicographic [Zanette, Fischetti & Balas]

– cutting planes from group relaxation [Gomory; Richard; Dey; Wolsey; Dash & Günlük;. . . ]

A. Lodi, Computation in MIP 13



MIP Challenges, the modeling viewpoint

• Besides developing additional tools in the spirit of the ones described before

(among all possible I would like

a tool for detecting minimal sources of numerical instability)

A. Lodi, Computation in MIP 14



MIP Challenges, the modeling viewpoint

• Besides developing additional tools in the spirit of the ones described before

(among all possible I would like

a tool for detecting minimal sources of numerical instability)

the main challenge from an application viewpoint seems to be dissemination.

A. Lodi, Computation in MIP 14



MIP Challenges, the modeling viewpoint

• Besides developing additional tools in the spirit of the ones described before

(among all possible I would like

a tool for detecting minimal sources of numerical instability)

the main challenge from an application viewpoint seems to be dissemination.

• More precisely, an interesting direction would be to extend the modeling (and solving)

capability within the MIP framework.

A. Lodi, Computation in MIP 14



MIP Challenges, the modeling viewpoint

• Besides developing additional tools in the spirit of the ones described before

(among all possible I would like

a tool for detecting minimal sources of numerical instability)

the main challenge from an application viewpoint seems to be dissemination.

• More precisely, an interesting direction would be to extend the modeling (and solving)

capability within the MIP framework.

• Two successful stories in this direction are:

1. SCIP (Solving Constraint Integer Programs, [Achterberg]) whose main feature is a tight

integration of Constraint Programming (CP) and SATisfiability techniques within a MIP

solver.

It can handle arbitrary (non-linear) constraints in a CP fashion.

A. Lodi, Computation in MIP 14



MIP Challenges, the modeling viewpoint

• Besides developing additional tools in the spirit of the ones described before

(among all possible I would like

a tool for detecting minimal sources of numerical instability)

the main challenge from an application viewpoint seems to be dissemination.

• More precisely, an interesting direction would be to extend the modeling (and solving)

capability within the MIP framework.

• Two successful stories in this direction are:

1. SCIP (Solving Constraint Integer Programs, [Achterberg]) whose main feature is a tight

integration of Constraint Programming (CP) and SATisfiability techniques within a MIP

solver.

It can handle arbitrary (non-linear) constraints in a CP fashion.

2. Bonmin (Basic Open-source Nonlinear Mixed INteger programming, [Bonami et al.]) has been

developed for Convex MINLP within the framework of the MIP solver Cbc [Forrest].

A. Lodi, Computation in MIP 14



MIP Modeling, CP and SCIP

Figure 2: Modeling in the CP paradigm.

A. Lodi, Computation in MIP 15



MIP Modeling, CP and SCIP

Figure 2: Modeling in the CP paradigm.

• A global constraint defines combinatorially a portion of the feasible region, i.e., it is able to

check feasibility of an assignment of values to variables.

A. Lodi, Computation in MIP 15



MIP Modeling, CP and SCIP

Figure 2: Modeling in the CP paradigm.

• A global constraint defines combinatorially a portion of the feasible region, i.e., it is able to

check feasibility of an assignment of values to variables.

• Moreover, a global constraint contains an algorithm which prunes (filters) values from the

variable domains so as to reduce as much as possible the search space.

A. Lodi, Computation in MIP 15



MIP Modeling, (Non-)Convex MINLP and Bonmin

Figure 3: A network design example in the water distribution, instance fossolo.

A. Lodi, Computation in MIP 16



MIP Modeling, (Non-)Convex MINLP and Bonmin

Figure 3: A network design example in the water distribution, instance fossolo.

• The model does not have special difficulties besides the so-called Hazen-Williams equation

modeling pressure loss in water pipes. However, such an equation is very “bad” . . .

A. Lodi, Computation in MIP 16



MIP Modeling, (Non-)Convex MINLP and Bonmin

Figure 3: A network design example in the water distribution, instance fossolo.

• The model does not have special difficulties besides the so-called Hazen-Williams equation

modeling pressure loss in water pipes. However, such an equation is very “bad” . . .

• A classical MIP model from the 80’s linearizes such an equation BUT ILOG-Cplex 10.2 does

not find any feasible solution for fossolo in 2 days of CPU time (!!) while Bonmin finds a very

accurate one in seconds.

A. Lodi, Computation in MIP 16



MIP Modeling, (Non-)Convex MINLP and Bonmin

Figure 3: A network design example in the water distribution, instance fossolo.

• The model does not have special difficulties besides the so-called Hazen-Williams equation

modeling pressure loss in water pipes. However, such an equation is very “bad” . . .

• A classical MIP model from the 80’s linearizes such an equation BUT ILOG-Cplex 10.2 does

not find any feasible solution for fossolo in 2 days of CPU time (!!) while Bonmin finds a very

accurate one in seconds. Using the diameters computed by Bonmin, the MIP does not certify

the solution to be feasible even allowing 1,000 linearization points.

A. Lodi, Computation in MIP 16



Computation in MIP: Conclusion

• Computational MIP is about making theory work agree with practice:

A. Lodi, Computation in MIP 17



Computation in MIP: Conclusion

• Computational MIP is about making theory work agree with practice:

not necessarily even text-book algorithmic ideas are computationally understood as they should.

A. Lodi, Computation in MIP 17



Computation in MIP: Conclusion

• Computational MIP is about making theory work agree with practice:

not necessarily even text-book algorithmic ideas are computationally understood as they should.

• In addition, once we face the challenge of improving on MIP solvers, we have to remember that

an idea is “good” if indeed improves the performance on a set of instances W/O deteriorating

it on another (larger) set.

A. Lodi, Computation in MIP 17



Computation in MIP: Conclusion

• Computational MIP is about making theory work agree with practice:

not necessarily even text-book algorithmic ideas are computationally understood as they should.

• In addition, once we face the challenge of improving on MIP solvers, we have to remember that

an idea is “good” if indeed improves the performance on a set of instances W/O deteriorating

it on another (larger) set.

• In summary:

A. Lodi, Computation in MIP 17



Computation in MIP: Conclusion

• Computational MIP is about making theory work agree with practice:

not necessarily even text-book algorithmic ideas are computationally understood as they should.

• In addition, once we face the challenge of improving on MIP solvers, we have to remember that

an idea is “good” if indeed improves the performance on a set of instances W/O deteriorating

it on another (larger) set.

• In summary: still a long way to go!

A. Lodi, Computation in MIP 17


