

University of Twente

Outpatient clinics: The viability of walk-in based policies

Drs. Nikky Kortbeek

Stochastic Operations Research

Ir. Maartje Zonderland, Prof.dr. Richard Boucherie, Dr. Nelly Litvak

Outpatient clinics: The viability of walk-in based policies

- Traditionally organized by appointments systems (Bailey 1952)
- Walk-in:
 - Eliminate access times
 - One stop shop
 - Less delay in care pathway
 - Patient centered: visit at moment of their choice
 - Less involved planning process
- Problems:
 - Not applicable for all patients
 - Uncertainty

Research question

- Implications walk-in:
 - Peaks in congestion?
 - Idleness?
 - Combination?
- What is the viability of a walk-in based policies
 - \Rightarrow What is the optimal ratio between walk-in and appointment?
 - \Rightarrow What is the best agenda?
- Goal:

To develop a general methodology, applicable to various outpatient clinics

Case study: CT AMC Amsterdam

Walk-in based policies

Walk-in: non-stationary behavior at day and week level

• 1. Appointments:

balance fluctuation by avoiding peaks

• 2. Walk-ins:

offer an appointment when system congested

am

Result: cyclic policy

	Monday	Tuesday	Wednesday	Thursday	Friday
8.00					
8.15					
8.30					
8.45					
9.00					
9.15					
9.30					
9.45					
10.00					
10.15					
10.30					
10.45					
11.00					
Totaal	5	7	3	3	9

am

Overview

- Principles
- Goal
- Methodology
- Numerical example

Principles

- Patients walk-in if medically possible
- If congested, patients are offered an appointment
- Earliest appointment possibility is tomorrow
- Different arrival distributions for different days
- Balance access time & waiting time by:
 - Set access time norm for appointment patients (e.g. E[access time] < Y days)
 - Given this constraint, maximize fraction of walk-ins seen directly

Goal

- Design a methodology by which a specific outpatient clinic can decide upon its access policy, consisting of
 - 1. Percentage of walk-in patients to divert to appointment slots: L
 - 2. (a) Optimal distribution of appointment slots over period D (e.g. a week): k_1, \ldots, k_D
 - (b) Given (a), optimal appointment day schedule

which satisfies access time norm for appointment patients and minimizes $\ L$

Methodology

- Model I Access process to outpatient clinic
- Model II Day process at outpatient clinic
- Algorithm Optimization combination walk-in / appointment

Model I: Access Process

D

- Cycle Length
- Daily capacity

• Daily demand (Poisson)

 $\lambda_1, \ldots, \lambda_D$

• Consult duration

1 slot

Model I: Access Process

• Backlog at start of day *d*+1

Model I: Access Process

am

indley-type equation
$$B_{d+1} = (B_d - k_d)^+ + A_d$$

Per

• Get
• Equ
$$P_{B_d}(z) = P_{A_{d+D-1}}(z) \times G^{-1}$$
• Equ
$$\times \left[\sum_{i=1}^{D} \sum_{q=0}^{k_{d+D-i}-1} (1 - z^{q-k_{d+D-i}}) \pi_{d+D-i}(q) \left(\prod_{r=1}^{i-1} z^{-k_{d+D-r}} \prod_{j=1}^{i-1} P_{A_{d+D-j-1}}(z) \right) \right]$$

Model II: Day Process

- Time slots
- 2 types of patients
- Consult duration 1
- Number of facilities F
- Arrivals

 1
 2
 3
 4
 N-1
 N

 8:30-8:45
 9:00-9:15
 ...
 16:45-17:00

- Appointment / Walk-in
- 1 time slot

Appointment according to schedule $Z = (z_1, ..., z_{N-1})$ Walk-in according to Poisson process with rates

 $\Gamma = (\gamma_1, \ldots, \gamma_{N-1})$

am

Model II: Day Process

- Walk-in patients are willing to wait X time slots, otherwise "LEAVE"
- Appointments get priority over walk-in patients
- Calculate performance by evaluating Markov Process
- Main performance indicator

L = E[number of walk-in patients to not seen/treated]

Algorithm (prelude)

- Connect model I and II
- Possibility not all appointment slots are used
 - From model I we know the probabilities of using appointment slots: $\pi_d(0), \dots, \pi_d(k_d)$
 - Evaluate day process for all realizations => L_d^{j}
- Result: expected number of patients leaving at day d

 $L_d = \sum \pi_d(j) \cdot L_d^{j}$

Algorithm

- Cycle Length 2 days
- Time slots per day 8
- Facility capacity
 1
- Demand for appointments $\lambda_1 =$
- $\lambda_1 = \lambda_2 = 2$
- Patience of walk-ins 2 time slots
- Access time norm

2 time 510t5

average <3 days

Iteratio	n Planned	Shifted	BestCycle	Leaving	Total	Sch	edu	ıle d	lay 1	1				Sch	edu	le d	ay 2				
1	(2, 2)	(0, 0)	(4, 1)	(0.24, 0.88)	1.12	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0

l	Iteration	Planned	Shifted	BestCycle	Leaving	Total	Sch	edu	ıle d	lay 1	L			ç	Sche	edul	le da	ay 2				
	1	(2, 2)	(0, 0)	(4, 1)	(0.24, 0.88)	1.12	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0
	2	(2.24, 2.87)	(0.24, 0.87)	(4, 2)	(0.28, 0.98)	1.26	1	0	1	0	0	1	0	1	0	0	0	0	0	1	1	0

Iteration	Planned	Shifted	BestCycle	Leaving	Total	Sch	edu	le d	ay 1	L			9	Sche	edul	le da	ay 2				
1	(2, 2)	(0, 0)	(4, 1)	(0.24, 0.88)	1 12	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0
2	(2.24, 2.87)	(0.24, 0.87)	(4, 2)	(0.28, 0.98)	1.26	1	0	1	0	0	1	0	1	0	0	0	0	0	1	1	0
3	(2.28, 2.98)	(0.28, 0.98)	(4, 2)	(0.28, 0.98)	1.26	1	0	1	0	0	1	0	1	0	0	0	0	0	1	1	0

To conclude

- Cyclic schedule that maximizes walk-ins seen same day
- Exponential service time, emergencies, no-shows and planned absence of server can be incorporated
- Tool by which management can evaluate trade-off
- Practice:
 - Estimate expected walk-in pattern
 - Constantly monitoring walk-in pattern
 - Monitoring patience of walk-in patients

Questions?

- CHOIR: Center for Healthcare Operations Improvement & Research
 http://www.choir.utwente.nl
- Online Bibliography OR & Health Care "ORchestra": http://www.choir.utwente.nl/en/orchestra
- E-mail:
 - n.kortbeek@utwente.nl

