University of

Outpatient clinics:
The viability of walk-in based policies
Drs. Nikky Kortbeek
Stochastic Operations Research
Ir. Maartje Zonderland, Prof.dr. Richard Boucherie, Dr. Nelly Litvak

Outpatient clinics: The viability of walk-in based policies

- Traditionally organized by appointments systems (Bailey 1952)
- Walk-in:
- Eliminate access times
- One stop shop
- Less delay in care pathway
- Patient centered: visit at moment of their choice
- Less involved planning process

- Problems:
- Not applicable for all patients
- Uncertainty

Research question

- Implications walk-in:
- Peaks in congestion?
- Idleness?
- Combination?
- What is the viability of a walk-in based policies
\Rightarrow What is the optimal ratio between walk-in and appointment?
\Rightarrow What is the best agenda?
- Goal:

To develop a general methodology, applicable to various outpatient clinics

Case study: CT AMC Amsterdam

Expected arrival rate for walk-in patiënts

Walk-in based policies

- Walk-in: non-stationary behavior at day and week level

- 1. Appointments:
- 2. Walk-ins:
balance fluctuation by avoiding peaks
offer an appointment when system congested

Result: cyclic policy

	Monday	Tuesday	Wednesday	Thursday	Friday
8.00					
8.15					
8.30					
8.45					
9.00					
9.15					
9.30					
9.45					
10.00					
10.15					
10.30					
10.45					
11.00					
Total					
1					

Overview

- Principles
- Goal
- Methodology
- Numerical example

Principles

- Patients walk-in if medically possible
- If congested, patients are offered an appointment
- Earliest appointment possibility is tomorrow
- Different arrival distributions for different days
- Balance access time \& waiting time by:
- Set access time norm for appointment patients (e.g. E[access time] < Y days)
- Given this constraint, maximize fraction of walk-ins seen directly

Goal

- Design a methodology by which a specific outpatient clinic can decide upon its access policy, consisting of

1. Percentage of walk-in patients to divert to appointment slots: L
2. (a) Optimal distribution of appointment slots over period D (e.g. a week):
k_{1}, \ldots, k_{D}
(b) Given (a), optimal appointment day schedule
which satisfies access time norm for appointment patients and minimizes L

Methodology

- Model I Access process to outpatient clinic
- Model II Day process at outpatient clinic
- Algorithm Optimization combination walk-in / appointment

Determine
app cycles
(Model I)

Model I: Access Process

- Cycle Length

D

- Daily capacity

- Daily demand (Poisson)
$\lambda_{1}, \ldots, \lambda_{D}$
- Consult duration

1 slot

Model I: Access Process

- Backlog at start of day d+1

Model I: Access Process

- Lindley-type equation

$$
B_{d+1}=\left(B_{d}-k_{d}\right)^{+}+A_{d}
$$

- Gel $P_{P_{B_{d}}(z)=P_{A_{d+D-1}}(z) \times G^{-1}}$
- Equ

$$
\times\left[\sum_{i=1}^{D} \sum_{q=0}^{k_{d+D-i}-1}\left(1-z^{\left.q-k_{d+D-i}\right) \pi_{d+D-i}(q)}\left(\prod_{r=1}^{i-1} z^{-k_{d+D-r}} \prod_{j=1}^{i-1} P_{A_{d+D-j-1}}(z)\right)\right]\right.
$$

- Per

Model II: Day Process

- Time slots

1	2	3	4		$\mathrm{~N}-1$	N
8:30-8:45		$9: 00-9: 15$		\ldots		16:45-17:00

- 2 types of patients

Appointment / Walk-in

- Consult duration

1 time slot

- Number of facilities

F

- Arrivals

Appointment according to schedule

$$
Z=\left(z_{1}, \ldots, z_{N-1}\right)
$$

Walk-in according to Poisson process with rates

$$
\Gamma=\left(\gamma_{1}, \ldots, \gamma_{N-1}\right)
$$

Model II: Day Process

1	2	3	4		$\mathrm{~N}-1$	N
8:30-8:45	$9: 00-9: 15$				\ldots	

- Walk-in patients are willing to wait X time slots, otherwise "LEAVE"
- Appointments get priority over walk-in patients
- Calculate performance by evaluating Markov Process
- Main performance indicator

$$
L=E[\text { number of walk-in patients to not seen / treated }]
$$

Algorithm (prelude)

- Connect model I and II
- Possibility not all appointment slots are used
- From model I we know the probabilities of using appointment slots:

$$
\pi_{d}(0), \ldots, \pi_{d}\left(k_{d}\right)
$$

- Evaluate day process for all realizations $=>L_{d}{ }^{j}$
- Result: expected number of patients leaving at day d

$$
L_{d}=\sum \pi_{d}(j) \cdot L_{d}^{j}
$$

Algorithm

Example

- Cycle Length
- Time slots per day
- Facility capacity
- Demand for appointments
- Patience of walk-ins
- Access time norm

2 days

8

1
$\lambda_{1}=\lambda_{2}=2$

2 time slots
average <3 days

Example

Example

Iteration	Planned	Shifted	BestCycle	Leaving	Total		du	le d	ay 1					ch	du	e da					
1	$(2,2)$	$(0,0)$	$(4,1)$	(0.24, 0.88)	1.12	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0

Example

Iteration	Planned	Shifted	BestCycle	Leaving	Total	Schedule day 1								Schedule day 2							
1	$(2,2)$	$(0,0)$	$(4,1)$	(0.24, 0.88)	1.12	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0
2	(2.24, 2.87	(0.24, 0.8	$(4,2)$	(0.28, 0.98)	1.26	1	0	1	0	0	1	0	1	0	0	0	0	0	1	1	0

Example

Iteratio 1	Planned$(2,2)$	$\begin{aligned} & \text { Shifted } \\ & (0,0) \end{aligned}$	BestCycle$(4,1)$	Leaving$(0.24,0.88)$	Total 1.12	Schedule day 1							Schedule day 2							
						1	0	1	0	0	1	0	1	0	0	00	0	0	1	0
2	(2.24, 2.87)	$(0.24,0.87)$	$(4,2)$	$(0.28,0.98)$	1.26	1	0	1	0	0	1	0	1	0	0	00	0	1	1	0
3	(2.28, 2.98$)$	(0.28, 0.98$)$	$(4,2)$	(0.28, 0.98)	1.26	1	0	1	0	0	1	0	1	0	0	00	0	1	1	0

To conclude

- Cyclic schedule that maximizes walk-ins seen same day
- Exponential service time, emergencies, no-shows and planned absence of server can be incorporated
- Tool by which management can evaluate trade-off
- Practice:
- Estimate expected walk-in pattern
- Constantly monitoring walk-in pattern
- Monitoring patience of walk-in patients

Questions?

- CHOIR: Center for Healthcare Operations Improvement \& Research http://www.choir.utwente.nl
- Online Bibliography OR \& Health Care "ORchestra":
http://www.choir.utwente.nl/en/orchestra
- E-mail:
n.kortbeek@utwente.nl

