
Making good rosters for a 24/7 environment

Han Hoogeveen and Eelko Penninkx
Institute of Information and Computing Sciences

Utrecht University
The Netherlands

j.a.hoogeveen@cs.uu.nl

January 14, 2010



Basic problem 24/7 rostering

I Given set of employees.

I Workers are needed 24/7.

I Desired occupation may vary (per shift and per day).

I The day is divided in three shifts: Morning-Late-Night (small
deviations are okay).

I Rosters must follow the order M-L-N (‘gezond roosteren’).

Objective: find a feasible solution.

Traditional roster: cyclic. Every employee follows the same set of
weekrosters.

New trend: individual rosters satisfying personal preferences in the
rosters (as much as possible).



Contents of the talk

I Description of example problem (doorkeepers at UMC).

I Solution method.

I Results.

I Possible extensions.



UMC Problem

I 35 employees.

I All employees are qualified for all kinds of work.

I Work in shifts to man several posts 24/7.

I Three shifts per day: Morning-Late-Night.

I Minimum attendance per shift is given, but additional
personnel can be hired.

I There are training sessions on Wednesday morning.

Objective: Generate a good roster for a whole year, taking into
account roster appreciation, shortage, overstaffing.



Rostering constraints

I There are ‘work’ shifts and stand-by shifts.

I Shifts in a roster must be in the order Morning-Late-Night.

I At most 4 consecutive Night shifts.

I ‘Enough’ time in between Night and Morning shift.

I Approximately 34 working hours per week (contract: 36 hours
per week).

I The number of working hours must be ‘reasonably balanced’.

For the problem approach, we ignore the stand-by shifts
afterwards (we fill these in later, given the rosters).



Personal appreciation of a roster

I Fixed day off each week (with preference concerning the day).

I Work both Saturday and Sunday, or both free.

I Vacation period off (not too many people at the same time).

I Specific day off (birthdays, etc.).

I Number of consecutive Morning/Late/Night shifts in one run.

I Number of days off after a series of Morning/Late/Night
shifts.

I The cost of a feasible roster is scaled from 0 (perfect) to 1
(horrible).

We can guarantee a fixed day off if not too many people
choose the same day.



Our approach in a nutshell

You need one year-roster per employee such that

I each employee is happy

I the combination of the chosen rosters is ‘optimal’

The quality of a schedule is computed as the sum of

I Total appreciation

I Total shortage cost (0.1 per employee short per shift)

I Total overstaffing (per employee per shift: 0.0 for Wednesday
morning; 0.01 for remaining weekdays Morning/Late; 1000 for
Night and weekend)



Basic idea

1. Generate for each employee a number of appreciated rosters
that are ‘combinable’ (reduce search space).

2. Pick the rosters that form the best combination.

A similar idea can be used to find a representative team.

I Select players that might make it to the team.

I Build the best team (for example through the ‘computer
coach’ program by Gerard Sierksma): the fewer ‘poor’
candidates, the faster.



Selecting the best combination: ILP

Suppose we are given for each employee a set of desirable, useful
year-rosters.

I Introduce a binary decision variable for each available roster;
selecting the roster corresponds to putting the variable equal
to 1.

I Minimize the total cost (appreciation, shortage, overstaffing),
such that

I there are enough employees available in each shift (including
shortage and overstaffing).

I each employee gets one roster,

Question: how do we find this set (call it S) of desirable
year-rosters?



Identifying S: column generation

Intuition: the solution of a simplification of the problem will
resemble the solution of the real problem.

I Simplify the problem by taking the LP-relaxation (rosters can
be chosen with a fractional value).

I Solve the LP-relaxation using column generation.

I Put the set of generated rosters in S.

I Additional trick: After solving the LP-relaxation, determine
for each employee the set of 2500 year-rosters with minimum
reduced cost and add these to S.



Column generation

I Solve the LP-relaxation starting with a small set of rosters.

I LP-theory: a feasible year-roster outside this set will improve
the value of the LP-relaxation only if its reduced cost is
negative =⇒

I solve the pricing problem of finding the feasible year-roster
with minimum reduced cost.

I The LP-relaxation has been solved to optimality if this
minimum is ≥ 0.



Pricing problem

I The reduced cost of a given roster is equal to the cost of this
roster minus the total value of the dual multipliers of the
included work shift minus a constant depending on the chosen
employee.

I For a given employee, the pricing problem is defined as
I select the work shifts for this employee that
I minimize the reduced cost such that
I the selected work shifts constitute a feasible roster.

I Rostering constraints
I Shifts in a roster must be in the order Morning-Late-Night.
I At most 4 consecutive Night shifts.
I ‘Enough’ time in between Night and Morning shift.
I Approximately 34 working hours per week (contract: 36 hours

per week).
I The number of working hours must be ‘reasonably balanced’.



Solve the pricing problem

Consider a given employee and his preferences

I Enumerate all feasible four-week rosters

I Eliminate the ones with cost more than 0.5 plus ‘dead ends’

I Use these in a layered-graph, where layer k corresponds to the
kth four-week period

I Connect two vertices in successive layers if this gives a feasible
eight-week roster

I A path through this layered network corresponds to a feasible
year roster





Solving the pricing problem

See to it that the length of a path corresponds to the reduced cost
of the corresponding year roster =⇒ Solve the pricing problem as a
shortest path problem.

The reduced cost consists of

I the value of the year-roster: this can be expressed as the value
of the included four-week periods plus the connecting arcs

I the sum of the dual multipliers of the included shifts: this can
be included by adjusting the value of the included four-week
periods

I a constant term per employee: easy to handle, since we
consider all non-identical employees separately.



Some data

Depending upon the employee:

I Each layer consists of approximately 1000-2000 nodes

I There are approximately 20.000-170.000 arcs between two
layers (on average 75.000)

The LP-relaxation can be solved to optimality; this gives a lower
bound on the value of the optimal solution.



Solving the resulting ILP

Unfortunately: this ILP is too big to be solved.

Remedy: use a rolling-horizon approach

1. Compute an optimal solution for the LP-relaxation for the
first 2 periods (8 weeks)

2. Pick the 2500 year-rosters with minimum reduced cost per
employee.

3. Solve the resulting ILP.

4. Fix the first period (four weeks) accordingly.

5. Repeat the procedure for weeks 5 and onward.



Results

I Solving the LPs (CPLEX 9.0) altogether requires
approximately 1 hour (but this can be reduced a lot).

I Solving the ILPs (CPLEX 9.0) altogether requires 1 hour.

I The integrality gap is very small (3%).

I Increasing the number of employees does not lead to
longer running times, but the integrality gap reduces.

I The method breaks down if there are too few employees.



Extension: pairs of employees

1. Employees working in fixed couples.
I Easy to model: selecting a roster corresponds to allocating two

people.
I May complicate small instances of the problem (or bigger ones

if there are many of these combinations).

2. Employees who should never work together.
I Easy to model: construct combined rosters for these two

people.
I No problems, once the combined rosters have been generated.

A few of these pairs of employees are easy to handle.



Extension: working in teams

1. Working in fixed teams
I Easy to model: one roster for all.
I Takes away a lot of freedom: causes problems for medium

sized instances.

2. Each person in the team must meet each other person at least
· · · times per month.

I Very challenging to model.
I Work-around: construct solution, check the constraint, and

adjust it locally.

3. Supervisor must meet each employee at least · · · times per
month.

I Supervisor’s schedule is given: allow only use four-week
schedules per employee that satisfy this constraint.

I Supervisor’s schedule is not given: challenging, like above.



Extension: qualified people required

I Only a subset of the employees has a special qualification.
I At least · · · people with this qualification are required per

shift.
I Easy to model: add a constraint for each shift.
I Hard to solve: the model gets 1000+ additional constraints

(per qualification).
I Work-around: ignore constraint and adjust solution locally.

Smart preprocessing will help.



Questions?


