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Generic Rare-event Simulation Problem

@ A generic rare-event estimation problem:

P (Hit B prior to A)
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Generic Rare-event Simulation Problem

State space in 2 dimensions
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Description of State-independent Approach: Review

@ Under suitable light-tailed assumptions:

Alog P (Hit B prior to A)
~ —inf{J(z):2z () is path that hits B prior to A}
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Description of State-independent Approach: Review

@ Under suitable light-tailed assumptions:

Alog P (Hit B prior to A)
~ —inf{J(z):2z () is path that hits B prior to A}

@ J(-) is the action function and z* (-) is the “optimal path”
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Description of State-independent Approach: Review

@ Under suitable light-tailed assumptions:

Alog P (Hit B prior to A)
~ —inf{J(z):2z () is path that hits B prior to A}

@ J(-) is the action function and z* (-) is the “optimal path”
@ Tracking optimal path apply exponential tilting at time t to follow

Z°(t)
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Counter-examples

e Model: Y; = (—1,—1)t+ X;; X; is Brownian motion &
By ={(x,y) : x > apb or y > a1b}
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Counter-examples

e Model: Y; = (—1,—1)t+ X;; X; is Brownian motion &
By ={(x,y) : x > apb or y > a1b}
e Estimate: u(b) =P (Tp, <) as b /o

First Passage Time Problem
in two dimensions

ba,

bag

(”11”"1)
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Heavy-tails...

e Consider estimating: P (T, < o), T, =inf{n>0:5, > b}
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Heavy-tails...

e Consider estimating: P (T, < o), T, =inf{n>0:5, > b}
e X;'si.i.d. reg. varying (heavy tails!) EX; <0
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Heavy-tails...

e Consider estimating: P (T, < o), T, =inf{n>0:5, > b}
e X;'si.i.d. reg. varying (heavy tails!) EX; <0

@ Turns out that

P (X <y[Th <o) — P(Xj <y)
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Heavy-tails...

e Consider estimating: P (T, < o), T, =inf{n>0:5, > b}
e X;'si.i.d. reg. varying (heavy tails!) EX; <0

@ Turns out that

P (X <y[Th <o) — P(Xj <y)

@ No clear way to mimic zero variance change-of-measure!
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Heavy-tails...

Consider estimating: P (T, < o), T, =inf{n>0:S5, > b}
Xi's i.i.d. reg. varying (heavy tails!) EX; <0
Turns out that

P (X <y[Th <o) — P(Xj <y)

No clear way to mimic zero variance change-of-measure!

@ No clear way to apply the systematic approach!
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Solution?

State — dependent importance sampling
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Review
Stylized Example: Light-tailed Random Walks
Control Theory, Harmonic Functions and Doob’s h-transform

Lyapunov Inequalities

Stylized Example: Heavy-tailed Random Walks
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Back to Counter-example in Light-tailed Setting

@ Two dimensional random walk
0o Ay={s:v/s>1}and B, = {s: v/ s> 1}

Sa(k)

Vi

Si(k)
n
ES(k)2 pk

o Efficiently estimate as n " o0
up (0) = Py[Sk/n hits A OR B Eventually]
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Elements of Associated Large Deviations

© Sipe| = X1+ ..+ X|pe), Xi'sareiid. with density f (-)
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Elements of Associated Large Deviations

° SLntJ = X1+ ...+ Xnt), Xk'sareiid. with density ()
o W, (t) =S /n+x
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Elements of Associated Large Deviations

° SLntJ = X1+ ...+ Xnt), Xk'sareiid. with density ()
o W, (t) =S /n+x
o ZW = v X, and 2 = ] X,
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Elements of Associated Large Deviations

Sine] = X1+ .+ X|pe, Xi's areiiid. with density f ()
W, (t) = S|ne)/n+x

zM = T X, and Z1? = W] X,

Note EZ\") = vJ u < 0and EZ\”) = v i <0
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Elements of Associated Large Deviations

Sine] = X1+ .+ X|pe, Xi's areiiid. with density f ()
W, (t) = S|ne)/n+x

zM = T X, and Z1? = W] X,

Note EZ\") = vJ u < 0and EZ\”) = v i <0

Assume there are 07,65 > 0 such that

Eexp(012)) = 1& Eexp(632,”) =1
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Large Deviations for the Stylized Example

@ Asn / oo

Up(x) = Px[W,(t) hits A OR B
~ crexp(—nb;i(1— v x)) + coexp(—nb5(1 — v x))
= exp(=nh(x) +o(n)),

where
h(x) = min[f7(1 — v x), 63(1 — v) x)].
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Lyapunov Inequalities
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let (1) = log E exp (/\TXk)
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Isaacs Equation for |.S. (Dupuis - Wang)
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let (1) = log E exp (/\TXk)
o f (x) =exp (ATX — 1 ()\)) f (x) <= Controls

o /(z) =maxy[ATz — 1 (A)] <— useful for large deviations

@ HJB egn. to minimize 2nd moment...

Co(w) = m/\in E[e_)‘TX‘H/’(’\) Co (w4 X/n)]

Blanchet (Columbia) Monte Carlo and Rare Events 14 / 40



Isaacs Equation for |.S. (Dupuis - Wang)

o Let (1) = log E exp (/\TXk)

fr (x) = exp ()\Tx - ()\)) f (x) <= Controls

I(z) = maxy[ATz — ¢ (A)] <- useful for large deviations

HJB eqn. to minimize 2nd moment...

Co(w) = m/\in E[e_)‘TX‘H/’(’\) Co (w4 X/n)]

o Cn (W) ~ exp (—ng (W))
0 ~ minlog E[e™ XT¥(M)-nlg(wtX/n)-g(w)])
A

X min mlgaIX[—ﬁT(/\ +ag(w))+y¢(A)—1(B)]
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let (1) = log E exp (/\TXk)

fr (x) = exp ()\Tx - ()\)) f (x) <= Controls

I(z) = maxy[ATz — ¢ (A)] <- useful for large deviations

HJB eqn. to minimize 2nd moment...

Co(w) = m/\in E[e_)‘TX‘H/’(’\) Co (w4 X/n)]

o Cn (W) ~ exp (—ng (W))
0 &~ minlog E[e*ATXJrlP(/\)*n[g(w+X/n)—g(w)]]
A

~

X min mlgaIX[—ﬁT(/\ +ag(w))+y¢(A)—1(B)]

o Game interpretation —> explains Isaacs equation name...
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Explicit Solution to the HJB Equation

@ HJB egn. to minimize 2nd moment...

Co(w) = m)jn E[e_)‘TX'H/’(A) Co (w4 X/n)]
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Explicit Solution to the HJB Equation

@ HJB egn. to minimize 2nd moment...

Co(w) = m)jn E[e_)‘TX'H/’(A) Co (w4 X/n)]

o Cp(w) ~exp(—ng(w))

0 ~ minlogE[e ' XT¥()-nlg(wX/n)—g(w)])
A

~ minlog E[e*)‘TXJr#'()‘)*ag(W)'X]]
A

= m/\in[l/) (A) +¢(—A—0dg(w))
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Explicit Solution to the HJB Equation

@ HJB egn. to minimize 2nd moment...

Ch(w) = m)jn E[e_)‘TX'HP(A) Co (w+X/n)]

o Cp(w) ~exp(—ng(w))

0 ~ minlogE[e ' XT¥()-nlg(wX/n)—g(w)])
A

~ minlog E[e*)‘TXJFE"()\)*ag(W)'X]]
A
= mAin[lp(/\)+1,b(—)\—ag(w))

e Solution: A = —dg (w) /2 and ¢ (—adg (w) /2) = 0 subject to
g(w)=1(weAUB)
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Harmonic Functions

@ u, (w)=1o0n AUB & harmonic:

Uy (W) = Py (Taus < ) = E[u, (w+ X/n)]
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Harmonic Functions

e u,(w)=1on AUB & harmonic:
up (W) = Py (Taus < ) = Efu, (w+ X/n)]

e Conditioning on Ta g < o (Doob's h-transform):

n X
P* (Xkt1 € dy| Sk = nw) = f (y) T (ZV—E—W)/n)
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Harmonic Functions

e u,(w)=1on AUB & harmonic:
up (W) = Py (Taus < ) = Efu, (w+ X/n)]

e Conditioning on Ta g < o (Doob's h-transform):

n X
P* (Xkt1 € dy| Sk = nw) = f (y) T (ZV—E—W)/n)

@ Constant likelihood ratio = zero variance

un (So/n)  un(S1/n) U (STavs—1/n)
un (S1/n) ~ un (S2/n) " tn (STays /1)

up (So/n) =
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

o Approximate sampler u, (w) = exp (—nh (w))

P ( Yii1 € dy\ Sk = nw)
f(y)exp (—nlh(w+y/n)—h(w)])
~ f(y)exp(—oh(w)-y)

Q
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

@ Approximate sampler u, (w) & exp (—nh (w))

P ( Yii1 € dy\ Sk = nw)
f(y)exp (—nlh(w+y/n)—h(w)])
~ f(y)exp(—oh(w)-y)

Q

e But

1= /ﬁ(xk+1 € dy| Sk = nw) = o (—dh (w)) =0
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

@ Approximate sampler u, (w) & exp (—nh (w))

P ( Yii1 € dy\ Sk = nw)
f(y)exp (—nlh(w+y/n)—h(w)])
~ f(y)exp(—oh(w)-y)

Q

e But
1= /ﬁ(xk+1 € dy| S = nw) = ¢ (—dh(w)) =0

e Equivalent to Isaacs equation with g (w) = 2h(w) —> best
asymptotic rate
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Dynamic Programming, Isaacs Equation, Harmonic

Functions: Summary
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Control Theory, Harmonic Functions and Doob’s h-transform

Lyapunov Inequalities

Stylized Example: Heavy-tailed Random Walks
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The Second Moment of a State-dependent Estimator

o Consider sampler

PQ(Xk_H edy\Sk:nw) =1 (W,W+X/n)f(y>dy

Blanchet (Columbia) Monte Carlo and Rare Events



The Second Moment of a State-dependent Estimator

o Consider sampler
PO (X1 € dy| Sk = nw) = r Y (w,w+ X/n)f(y)dy
o Likelihood ratio

r(W,,(O), Wn (1/”)) ...r(W,,(TAUB — 1), Wn(TAug))
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The Second Moment of a State-dependent Estimator

o Consider sampler
PQ (Xks1 € dy| Sk = nw) =™ (w,w + X/n) f (y) dy
@ Likelihood ratio
r(W,(0), W, (1/n)) ..t(Wy(Taus — 1), Wa(Taus))
@ Second moment of estimator
S(w) = E[r(w, w+ X/n)s(w + X /n)]

subject to s(w) =1 for w € AUB.
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The Lyapunov Inequality

B. & Glynn '08: Lyapunov inequality

v(w) > E[r(w,w+ X/n)v(w + X/n)]

subject to v(w) > 1 forw € AUB. Then, v (w) > s (w).

e How to use the result? 1) Identify a change-of-measure, 2) use
heuristic / approx. to force v(w) & u, (w)?.
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Lyapunov Inequalities and Subsolutions

@ Subsolutions introduced by Dupuis & Wang '07
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Lyapunov Inequalities and Subsolutions

@ Subsolutions introduced by Dupuis & Wang '07

@ Connections to Lyapunov inequalities B. & Glynn '08
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Lyapunov Inequalities and Subsolutions

@ Subsolutions introduced by Dupuis & Wang '07
@ Connections to Lyapunov inequalities B. & Glynn '08

e Lyapunov function v (w) = exp(—ng (w)) & A = —adg (w) /2
1> Elexp(—AT X+ (1)) exp(—n[g (w+ X/n) — g(w)])]

subject to g(w) < 0 for w € AUB. Then, v (w) > s (w).
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Lyapunov Inequalities and Subsolutions

@ Subsolutions introduced by Dupuis & Wang '07
@ Connections to Lyapunov inequalities B. & Glynn '08
e Lyapunov function v (w) = exp(—ng (w)) & A = —adg (w) /2

1> Efexp(—AT X + ¢ (1)) exp(—n[g (w+ X/n) — g(w)])]

subject to g(w) < 0 for w € AUB. Then, v (w) > s (w).
@ Expanding as n /" co we get

14 0(1/n) = exp[2(~0g (w) /2)]
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Lyapunov Inequalities and Subsolutions

@ Subsolutions introduced by Dupuis & Wang '07
@ Connections to Lyapunov inequalities B. & Glynn '08
e Lyapunov function v (w) = exp(—ng (w)) & A = —adg (w) /2

1> Efexp(—AT X + ¢ (1)) exp(—n[g (w+ X/n) — g(w)])]

subject to g(w) < 0 for w € AUB. Then, v (w) > s (w).
@ Expanding as n /" co we get

14 0(1/n) = exp[2(~0g (w) /2)]
@ Yields subsolution to the Isaacs equation (note smoothness)

P (—0g (w)/2)<0st. g(w)<0,wecAUB
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The Mollification

@ Back to random walk example
h(w) = min[85(1— v w),05(1—v) w)]
= —max[0 (v w—1),05(v) w—1)]

NOT smooth...
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The Mollification

@ Back to random walk example
h(w) = min[85(1— v w),05(1—v) w)]
= —max[0 (v w—1),05(v) w—1)]

NOT smooth...
@ Mollification:
he (W)

= —eloglexp(6; (v w — 1) /&) + exp(83 (v w — 1)/¢)
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The Mollification

@ Back to random walk example
h(w) = min[85(1— v w),05(1—v) w)]
= —max[0 (v w—1),05(v) w—1)]

NOT smooth...
@ Mollification:
he (W)

= —eloglexp(6; (v w — 1) /&) + exp(83 (v w — 1)/¢)

@ Implementation via mixtures:

W) = v ey s ) T ) r s )
: 60w —1)/e),
Bw) = ep(O;(w—1)/e).
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The Form of a Typical Optimality Statement...

Theorem (Dupuis & Wang '07)

Let g, (w) = 2h,,(w) and assume that ne, — oo apply corresponding
sampler. Then,

2nd Moment of Est. = exp(—2nh(w) + o (n)).

Blanchet (Columbia)
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Lyapunov Inequalities

@ Selecte, =1/n

7y (w) = exp(n@f(vlTW—l))
N, (w) = exp(nBE(VQTw—l))
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Lyapunov Inequalities

@ Selecte, =1/n

M (w) = exp(nbi (v w—1))
My (w) = exp(nb3(v] w—1))

o Mixture sampler from density f (x)

Fo0 mw 1 (w)
700 = a2 () + ey o (0

Blanchet (Columbia)
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Lyapunov Inequalities

@ Selecte, =1/n

M (w) = exp(nbi (v w—1))
My (w) = exp(nb3(v] w—1))

o Mixture sampler from density f (x)

Foo oy (w)
f(x) 1y (w)+m,y(w

@ Lyapunov function

o (65 ) 4T e (o3

v(w) = (1, (W) +1,(w))* > 1
for vy w > 1 OR vy w > 1... BOUNDARY CONDITION OK!
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A Lyapunov Inequality

viw) = [ (w)+1,(w)]?
m(w+X/n) = 5 (w
Ny (w+X/n) = 1,(w
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A Lyapunov Inequality

o
viw) = [y (w) + 1, (w)]?
m (w+X/n) = 1, (w)e X
Hy(W+X/n) = 1, (w)e X
o
Ev(w+X/n) 1
v (w) mw) X W) e X

W) H1,() MOEAT
gl (W) exp (011 X) + 17, (w) exp (9m X)

ROETNC) =t
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Theorem (B., Glynn and Leder (2009))

One can take e = 1/n as mollification parameter & in fact this is the
optimal choice as it gives bounded coef. of variation

2nd Moment < (v1(0) + v2(0))? < cu, (0)>.
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Review
Stylized Example: Light-tailed Random Walks
Control Theory, Harmonic Functions and Doob’s h-transform

Lyapunov Inequalities

Stylized Example: Heavy-tailed Random Walks
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Let X1, Xo,... are heavy-tailed (TBD) and EX; = u < 0
S, =X1+ ...+ X, given 5 = s
Object of interest:

b (5) = Py (T < oo) = 0 P(f;f D% (14 o)

asb—s / .
Asymptotics: Pakes, Veraberbeke, Cohen... see text of Asmussen '03
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Basics on Heavy-tails

@ Rich theory for heavy-tailed random walks based on subexponentiality
P(Xl + X5 > b) :2P(X1 > b) (1+O(1))

as b — oo.

e Focus on regularly varying distributions (basically power-law type)
P(Xy>t)=t"L(t)

fora >1and L(tB) /L(t) — last / oo for each p > 0.
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State-dependent Importance Sampling

e Importance sampling: Markov kernel K (-)

K (S(),Sl) = ril (50,51) le (Sl — 50)
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State-dependent Importance Sampling

e Importance sampling: Markov kernel K (-)
K (50,51) = ril (50,51) fX1 (Sl — 50)
e Importance sampling estimator: S,'s simulated under K (-)

Ty—1
= H r(5j,5j+1)/<Tb < OO),

j=1
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State-dependent Importance Sampling

e Importance sampling: Markov kernel K (-)
K (50,51) = ril (50,51) le (Sl — 50)
e Importance sampling estimator: S,'s simulated under K (-)
T,—1
= H r(5j,5j+1)/<Tb < OO),
j=1

o Recall to get good variance: Select an IS that mimics the
conditional distribution.
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Description of the Conditional Distribution

(Asmussen and Kluppelberg): Conditional on T}, < oo, we have that

Sut, ST, —b T
( Tb b " ) — (]/lU,Zl,ZQ)

on D(0,1) x Rx R as b /" oo, where Z; and Z, are Pareto with index
o—1.

o Interpretation: Prior to ruin, random walk has drift p and a large
jump of size b occurs suddenly in O (b) time...
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Description of the Conditional Distribution

(Asmussen and Kluppelberg): Conditional on T}, < oo, we have that

Sut, ST, —b T
( Tb b " ) — (‘MU,Zl,ZQ)

on D(0,1) x Rx R as b /" oo, where Z; and Z, are Pareto with index
o—1.

o Interpretation: Prior to ruin, random walk has drift p and a large
jump of size b occurs suddenly in O (b) time...

@ So, given that a jump hasn't occurred by time k, then Sy ~ pk and
the chance of reaching b in the next increment given that we
eventually reach b (T, < o)

P(X > b— uk) —yP(X>b—yk)_O<l>
JoP(X>b—puydu  [TP(X>s)du '

b
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Good Family of Changes of Measure for Heavy Tails

o Change-of-measure: Here s is current position of the walk, f is the
density

fx (x)I(x>a(b—ys))
P(X >a(b—ys))
+a-p(s) BLR =20 -]

fxis (xIs) = p(s)

@ In other words, sy = s and s; = sp + x
I(si—s0>a(b—sy))
P(X>a(b—s))

+(1—-p(s1)) ’(;1(}52&(5;)53))

r(sons)” = p(%)

@ Introduced by Dupuis, Leder and Wang '06 for finite sums...
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Lyapunov Inequality

@ Recall Lyapunov inequality

Lemma (B. & Glynn '08)
Suppose that there is a positive function g (-) such that

k(&(S)r(s.S1)*) g(S1)r (s, S1)
o () e (52

g (s) g(s) B
for all s < b and g (s) > 1 for s > b. Then,

Tp—1

ESKZ2 = ESK <H r(SJ'SJ'H) (Tb < OO)) S g(s).

Jj=1

Blanchet (Columbia) Monte Carlo and Rare Events
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Constructing Lyapunov Functions for Heavy-tails

e Wish to achieve strong efficiency, so we pick (for some x > 0)

g (s) = min <x </b°°sP(x> u)du)2,1>.
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Constructing Lyapunov Functions for Heavy-tails

e Wish to achieve strong efficiency, so we pick (for some x > 0)

g (s) = min <x </b°°sP(x> u)du)2,1>.

@ Pick for some 8 > 0

. P(X>b—5)
p(s)_ef;’isP(x>s)du
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Constructing Lyapunov Functions for Heavy-tails

e Wish to achieve strong efficiency, so we pick (for some x > 0)

g (s) = min <x </b°°sP(x> u)du)2,1>.

@ Pick for some 8 > 0

. P(X>b—5)
p(s)_ef;’isP(x>s)du

@ Must select « and 6 to verify Lyapunov inequality
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Testing the Lyapunov Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

g(51)r (s, 51)
5“5 )
E(g(s+X);X>a(b—s))P(X>a(b—s))
p(s)g(s)
E(g(s+X)iX <a(b—5)P(X <a(b—5))

(1-p(s))g(s)

+
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Testing the Lyapunov Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

g(S1)r(s, S1)
5 (526 )
E(g(s+X);X>a(b—s))P(X>a(b—ys))
p(s)g(s)
LElg(s+X)iX<a(b—s))P(X<a(b=s))
(I1—p(s))g(s)
P(X>a(b—s)) L Elgls+X)iX<a(b=s))
p(s)g(s) (1—p(s))&(s)
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Testing the Lyapunov Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

o (42752

P(X>a(b $))?  E(g(s+X);X<a(b—s))

IN

+

p(s)g(s) (1=p(s))e(s)
_ a*P(X>a(b—s)) P(X > (b—s))
- ox [, P (X > u)du FLr2(et6) (f[:isP(X>u)du>

@ NOTE: crucial that u < 0! Pick 6 small and « large
—u

a
Ox

+20+2u <0
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Summary and Conclusions

@ State-dependent Importance Sampling: Choose RIGHT parametric
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Summary and Conclusions

State-dependent Importance Sampling: Choose RIGHT parametric
family of distributions (or controls)

e Find subsolutions / Lyapunov inequalities to enforce optimality
(involves course approximation)

Lyapunov inequalities apply to light and heavy tails

Construct Lyapunov function from course large deviations analysis

Lyapunov inequalities guide selection of mollification parameters and
guarantee good performance
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