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Generic Rare-event Simulation Problem

A generic rare-event estimation problem:

P (Hit B prior to A)
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Description of State-independent Approach: Review

Under suitable light-tailed assumptions:

∆ logP (Hit B prior to A)
� � inffJ (z) : z (�) is path that hits B prior to Ag

J (�) is the action function and z� (�) is the �optimal path�
Tracking optimal path apply exponential tilting at time t to follow
ż� (t)
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Counter-examples

Model: Yt = (�1,�1)t + Xt ; Xt is Brownian motion &
Bb = f(x , y) : x � a0b or y � a1bg

Estimate: u (b) = P (TBb < ∞) as b % ∞
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Heavy-tails...

Consider estimating: P (Tb < ∞), Tb = inffn � 0 : Sn > bg

Xi�s i.i.d. reg. varying (heavy tails!) EXi < 0

Turns out that

P (Xj � y jTb < ∞) �! P (Xj � y)

No clear way to mimic zero variance change-of-measure!
No clear way to apply the systematic approach!
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Solution?

State� dependent importance sampling
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Back to Counter-example in Light-tailed Setting

Two dimensional random walk
An = fs : vT2 s � 1g and Bn = fs : vT1 s � 1g

S1(k)

S2(k)

μ

v2

v1

ES(k) = μk

E¢ ciently estimate as n% ∞

un (0) = P0[Sk/n hits A OR B Eventually]
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Elements of Associated Large Deviations

Sbntc = X1 + ...+ Xbntc, Xk�s are i.i.d. with density f (�)

Wn (t) = Sbntc/n+ x

Z (1)k = vT1 Xk and Z
(2)
k = vT2 Xk

Note EZ (1)k = vT1 µ < 0 and EZ (2)k = vT2 µ < 0

Assume there are θ�1, θ
�
2 > 0 such that

E exp(θ�1Z
(1)
k ) = 1 & E exp(θ�2Z

(2)
k ) = 1

E [exp(θ�1Z
(1)
k )Z (1)k ] < ∞ & E [exp(θ�2Z

(2)
k )Z (2)k ] < ∞
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Large Deviations for the Stylized Example

As n% ∞

un (x) = Px [Wn (t) hits A OR B ]
� c1 exp(�nθ�1(1� vT1 x)) + c2 exp(�nθ�2(1� vT2 x))
= exp(�nh (x) + o (n)),

where
h (x) = min[θ�1(1� vT1 x), θ�2(1� vT2 x)].
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Isaacs Equation for I.S. (Dupuis - Wang)

Let ψ (λ) = log E exp
�

λTXk
�

fλ (x) = exp
�

λT x � ψ (λ)
�
f (x) <� Controls

I (z) = maxλ[λ
T z � ψ (λ)] <�useful for large deviations

HJB eqn. to minimize 2nd moment...

Cn (w) = min
λ
E [e�λTX+ψ(λ)Cn (w + X/n)]

Cn (w) � exp (�ng (w))

0 � min
λ
log E [e�λTX+ψ(λ)�n[g (w+X /n)�g (w )]]

� min
λ
max

β
[�βT (λ+ ∂g (w)) + ψ (λ)� I (β)]

Game interpretation � > explains Isaacs equation name...
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Explicit Solution to the HJB Equation

HJB eqn. to minimize 2nd moment...

Cn (w) = min
λ
E [e�λTX+ψ(λ)Cn (w + X/n)]

Cn (w) � exp (�ng (w))

0 � min
λ
log E [e�λTX+ψ(λ)�n[g (w+X /n)�g (w )]]

� min
λ
log E [e�λTX+ψ(λ)�∂g (w )�X ]]

= min
λ
[ψ (λ) + ψ (�λ� ∂g (w))

Solution: λ = �∂g (w) /2 and ψ (�∂g (w) /2) = 0 subject to
g (w) = I (w 2 A[ B)
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Harmonic Functions

un (w) = 1 on A[ B & harmonic:

un (w) = Pw (TA[B < ∞) = E [un (w + X/n)]

Conditioning on TA[B < ∞ (Doob�s h-transform):

P� (Xk+1 2 dy j Sk = nw) = f (y)
un (w + X/n)

un (w)

Constant likelihood ratio =) zero variance

un (S0/n) =
un (S0/n)
un (S1/n)

� un (S1/n)
un (S2/n)

� ...� un (STAUB�1/n)
un (STAUB /n)
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Isaacs Equation & Harmonic Functions

Zero-variance sampler

P� (Xk+1 2 dy j Sk = nw) = f (y)
un (w + y/n)
un (w)

Approximate sampler un (w) � exp (�nh (w))eP (Yk+1 2 dy j Sk = nw)
� f (y) exp (�n[h (w + y/n)� h (w)])
� f (y) exp (�∂h (w) � y)

But

1 =
Z eP (Xk+1 2 dy j Sk = nw) =) ψ (�∂h (w)) = 0

Equivalent to Isaacs equation with g (w) = 2h (w) �> best
asymptotic rate
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Dynamic Programming, Isaacs Equation, Harmonic
Functions: Summary
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The Second Moment of a State-dependent Estimator

Consider sampler

PQ (Xk+1 2 dy j Sk = nw) = r�1 (w ,w + X/n) f (y) dy

Likelihood ratio

r (Wn(0),Wn (1/n)) ...r(Wn(TA[B � 1),Wn(TA[B ))

Second moment of estimator

s(w) = E [r(w ,w + X/n)s(w + X/n)]

subject to s(w) = 1 for w 2 A[ B.
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The Lyapunov Inequality

Lemma
B. & Glynn �08: Lyapunov inequality

v(w) � E [r(w ,w + X/n)v(w + X/n)]

subject to v(w) � 1 for w 2 A[ B. Then, v (w) � s (w).

How to use the result? 1) Identify a change-of-measure, 2) use
heuristic / approx. to force v(w) � un (w)2.
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Lyapunov Inequalities and Subsolutions

Subsolutions introduced by Dupuis & Wang �07

Connections to Lyapunov inequalities B. & Glynn �08

Lyapunov function v (w) = exp(�ng (w)) & λ = �∂g (w) /2

1 � E [exp(�λTX + ψ (λ)) exp(�n[g (w + X/n)� g(w)])]

subject to g(w) � 0 for w 2 A[ B. Then, v (w) � s (w).
Expanding as n% ∞ we get

1+O (1/n) � exp[2ψ(�∂g (w) /2)]

Yields subsolution to the Isaacs equation (note smoothness)

ψ (�∂g (w) /2) � 0 s.t. g (w) � 0, w 2 A[ B
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subject to g(w) � 0 for w 2 A[ B. Then, v (w) � s (w).

Expanding as n% ∞ we get

1+O (1/n) � exp[2ψ(�∂g (w) /2)]

Yields subsolution to the Isaacs equation (note smoothness)

ψ (�∂g (w) /2) � 0 s.t. g (w) � 0, w 2 A[ B
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The Molli�cation

Back to random walk example

h (w) = min[θ�1(1� vT1 w), θ�2(1� vT2 w)]
= �max[θ�1(vT1 w � 1), θ�2(vT2 w � 1)]

NOT smooth...

Molli�cation:

hε (w)

= �ε log[exp(θ�1(v
T
1 w � 1)/ε) + exp(θ�2(v

T
2 w � 1)/ε)]

Implementation via mixtures:

�∂hε (w) = θ�1v
T
1

ηε
1 (w)

ηε
1 (w) + ηε

2 (w)
+ θ�2v

T
2

ηε
2 (w)

ηε
1 (w) + ηε

2 (w)
,

ηε
1 (w) = exp(θ�1(v

T
1 w � 1)/ε),

ηε
2 (w) = exp(θ�2(v

T
2 w � 1)/ε).
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The Form of a Typical Optimality Statement...

Theorem (Dupuis & Wang �07)

Let gεn (w) = 2hεn (w) and assume that nεn �! ∞ apply corresponding
sampler. Then,

2nd Moment of Est. = exp(�2nh (w) + o (n)).
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Lyapunov Inequalities

Select εn = 1/n

η1 (w) = exp(nθ�1(v
T
1 w � 1))

η2 (w) = exp(nθ�2(v
T
2 w � 1))

Mixture sampler from density ef (x)
ef (x)
f (x)

=
η1 (w)

η1 (w) + η2 (w)
exp

�
θ�1v

T
1 x
�
+

η2 (w)
η1 (w) + η2 (w)

exp
�

θ�2v
T
2 x
�

Lyapunov function

v (w) = (η1 (w) + η2(w))
2 � 1

for vT1 w � 1 OR vT2 w � 1... BOUNDARY CONDITION OK!
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A Lyapunov Inequality

v (w) = [η1 (w) + η2 (w)]
2

η1 (w + X/n) = η1 (w) e
θ�vT1 X

η2 (w + X/n) = η2 (w) e
θ�vT2 X

E
v(w + X/n)

v (w)
1

η1(w )
η1(w )+η2(w )

eθ�1v
T
1 X +

η2(w )
η1(w )+η2(w )

eθ�2v
T
2 X

= E
η1 (w) exp

�
θ�1v

T
1 X

�
+ η2 (w) exp

�
θ�2v

T
2 X

�
η1 (w) + η2 (w)

= 1.
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Theorem (B., Glynn and Leder (2009))

One can take ε = 1/n as molli�cation parameter & in fact this is the
optimal choice as it gives bounded coef. of variation

2nd Moment � (v1(0) + v2(0))2 � cun (0)2 .
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Agenda

Review

Stylized Example: Light-tailed Random Walks

Control Theory, Harmonic Functions and Doob�s h-transform

Lyapunov Inequalities

Stylized Example: Heavy-tailed Random Walks
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Setup

Let X1, X2,... are heavy-tailed (TBD) and EXi = µ < 0

Sn = X1 + ...+ Xn given S0 = s

Object of interest:

ub (s) = Ps (Tb < ∞) =

R ∞
b�s P (Xi > u) du

�µ
(1+ o (1))

as b� s % ∞.
Asymptotics: Pakes, Veraberbeke, Cohen... see text of Asmussen �03
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Basics on Heavy-tails

Rich theory for heavy-tailed random walks based on subexponentiality

P (X1 + X2 > b) = 2P (X1 > b) (1+ o (1))

as b �! ∞.
Focus on regularly varying distributions (basically power-law type)

P (X1 > t) = t�αL (t)

for α > 1 and L (tβ) /L (t) �! 1 as t % ∞ for each β > 0.
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State-dependent Importance Sampling

Importance sampling: Markov kernel K (�)

K (s0, s1) = r�1 (s0, s1) fX1 (s1 � s0)

Importance sampling estimator: Sn�s simulated under K (�)

Z =
Tb�1
∏
j=1

r (Sj ,Sj+1) I (Tb < ∞) ,

Recall to get good variance: Select an IS that mimics the
conditional distribution.
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Description of the Conditional Distribution

Theorem
(Asmussen and Kluppelberg): Conditional on Tb < ∞, we have that�

SuTb
Tb

,
STb � b
b

,
Tb
b

�
=) (µu,Z1,Z2)

on D(0, 1)� R � R as b % ∞, where Z1 and Z2 are Pareto with index
α� 1.

Interpretation: Prior to ruin, random walk has drift µ and a large
jump of size b occurs suddenly in O (b) time...

So, given that a jump hasn�t occurred by time k, then Sk � µk and
the chance of reaching b in the next increment given that we
eventually reach b (Tb < ∞)

P (X > b� µk)R ∞
0 P (X > b� µu) du

� �µP (X > b� µk)R ∞
b P (X > s) du

= O
�
1
b

�
.
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Good Family of Changes of Measure for Heavy Tails

Change-of-measure: Here s is current position of the walk, f is the
density

fX js (x j s) = p (s)
fX (x) I (x > a (b� s))
P (X > a (b� s))

+ (1� p (s)) fX (x) I (x � a (b� s))
P (X > a (b� s))

In other words, s0 = s and s1 = s0 + x

r (s0, s1)
�1 = p (s0)

I (s1 � s0 > a (b� s0))
P (X > a (b� s0))

+ (1� p (s1))
I (s1 � s0 � a (b� s0))
P (X � a (b� s0))

Introduced by Dupuis, Leder and Wang �06 for �nite sums...
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Lyapunov Inequality

Recall Lyapunov inequality

Lemma (B. & Glynn �08)

Suppose that there is a positive function g (�) such that

EKs

 
g (S1) r (s,S1)

2

g (s)

!
= Es

�
g (S1) r (s,S1)

g (s)

�
� 1

for all s � b and g (s) � 1 for s > b. Then,

EKs Z
2 = EKs

 
Tb�1
∏
j=1

r (Sj ,Sj+1)
2 I (Tb < ∞)

!
� g (s) .
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Constructing Lyapunov Functions for Heavy-tails

Wish to achieve strong e¢ ciency, so we pick (for some κ > 0)

g (s) = min

 
κ

�Z ∞

b�s
P (X > u) du

�2
, 1

!
.

Pick for some θ > 0

p (s) = θ
P (X > b� s)R ∞
b�s P (X > s) du

Must select κ and θ to verify Lyapunov inequality
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Testing the Lyapunov Inequality

Testing the Inequality on g (s) < 1 (note that g � 1):

Es

�
g (S1) r (s,S1)

g (s)

�
=

E (g (s + X ) ;X > a (b� s))P (X > a (b� s))
p (s) g (s)

+
E (g (s + X ) ;X � a (b� s))P (X � a (b� s))

(1� p (s)) g (s)
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Testing the Lyapunov Inequality

Testing the Inequality on g (s) < 1 (note that g � 1):

Es

�
g (S1) r (s,S1)

g (s)

�
� P (X > a (b� s))2

p (s) g (s)
+
E (g (s + X ) ;X � a (b� s))

(1� p (s)) g (s)

� a�αP (X > a (b� s))
θκ
R ∞
b�s P (X > u) du

+ 1+ 2 (µ+ θ)
P (X > (b� s))�R ∞
b�s P (X > u) du

�
NOTE: crucial that µ < 0! Pick θ small and κ large

a�α

θκ
+ 2θ + 2µ � 0
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Summary and Conclusions

State-dependent Importance Sampling: Choose RIGHT parametric
family of distributions (or controls)

Find subsolutions / Lyapunov inequalities to enforce optimality
(involves course approximation)

Lyapunov inequalities apply to light and heavy tails

Construct Lyapunov function from course large deviations analysis

Lyapunov inequalities guide selection of molli�cation parameters and
guarantee good performance
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