Efficient Simulation for Rare Events

Jose Blanchet

Columbia Department of IEOR
Lunteren Conference 2010

Agenda

- Review
- Stylized Example: Light-tailed Random Walks
- Control Theory, Harmonic Functions and Doob's h-transform
- Lyapunov Inequalities
- Stylized Example: Heavy-tailed Random Walks

Generic Rare-event Simulation Problem

- A generic rare-event estimation problem:
$P($ Hit B prior to $A)$

Generic Rare-event Simulation Problem

Description of State-independent Approach: Review

- Under suitable light-tailed assumptions:
$\Delta \log P($ Hit B prior to $A)$
$\approx \quad-\inf \{J(z): z(\cdot)$ is path that hits B prior to $A\}$

Description of State-independent Approach: Review

- Under suitable light-tailed assumptions:

$$
\begin{aligned}
& \Delta \log P(\text { Hit } B \text { prior to } A) \\
\approx & -\inf \{J(z): z(\cdot) \text { is path that hits } B \text { prior to } A\}
\end{aligned}
$$

- $J(\cdot)$ is the action function and $z^{*}(\cdot)$ is the "optimal path"

Description of State-independent Approach: Review

- Under suitable light-tailed assumptions:

$$
\begin{aligned}
& \Delta \log P(\text { Hit } B \text { prior to } A) \\
\approx & -\inf \{J(z): z(\cdot) \text { is path that hits } B \text { prior to } A\}
\end{aligned}
$$

- $J(\cdot)$ is the action function and $z^{*}(\cdot)$ is the "optimal path"
- Tracking optimal path apply exponential tilting at time t to follow $\dot{z}^{*}(t)$

Counter-examples

- Model: $Y_{t}=(-1,-1) t+X_{t} ; X_{t}$ is Brownian motion \& $B_{b}=\left\{(x, y): x \geq a_{0} b\right.$ or $\left.y \geq a_{1} b\right\}$

Counter-examples

- Model: $Y_{t}=(-1,-1) t+X_{t} ; X_{t}$ is Brownian motion \& $B_{b}=\left\{(x, y): x \geq a_{0} b\right.$ or $\left.y \geq a_{1} b\right\}$
- Estimate: $u(b)=P\left(T_{B_{b}}<\infty\right)$ as $b \nearrow \infty$

First Passage Time Problem in two dimensions

Heavy-tails...

- Consider estimating: $P\left(T_{b}<\infty\right), T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$

Heavy-tails...

- Consider estimating: $P\left(T_{b}<\infty\right), T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$
- X_{i} 's i.i.d. reg. varying (heavy tails!) $E X_{i}<0$

Heavy-tails...

- Consider estimating: $P\left(T_{b}<\infty\right), T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$
- X_{i} 's i.i.d. reg. varying (heavy tails!) $E X_{i}<0$
- Turns out that

$$
P\left(X_{j} \leq y \mid T_{b}<\infty\right) \longrightarrow P\left(X_{j} \leq y\right)
$$

Heavy-tails...

- Consider estimating: $P\left(T_{b}<\infty\right), T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$
- X_{i} 's i.i.d. reg. varying (heavy tails!) $E X_{i}<0$
- Turns out that

$$
P\left(X_{j} \leq y \mid T_{b}<\infty\right) \longrightarrow P\left(X_{j} \leq y\right)
$$

- No clear way to mimic zero variance change-of-measure!

Heavy-tails...

- Consider estimating: $P\left(T_{b}<\infty\right), T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$
- X_{i} 's i.i.d. reg. varying (heavy tails!) $E X_{i}<0$
- Turns out that

$$
P\left(X_{j} \leq y \mid T_{b}<\infty\right) \longrightarrow P\left(X_{j} \leq y\right)
$$

- No clear way to mimic zero variance change-of-measure!
- No clear way to apply the systematic approach!

Solution?

State - dependent importance sampling

Agenda

- Review
- Stylized Example: Light-tailed Random Walks
- Control Theory, Harmonic Functions and Doob's h-transform
- Lyapunov Inequalities
- Stylized Example: Heavy-tailed Random Walks

Back to Counter-example in Light-tailed Setting

- Two dimensional random walk
- $A_{n}=\left\{s: v_{2}^{\top} s \geq 1\right\}$ and $B_{n}=\left\{s: v_{1}^{\top} s \geq 1\right\}$

- Efficiently estimate as $n \nearrow \infty$

$$
u_{n}(0)=P_{0}\left[S_{k} / n \text { hits } A \text { OR } B \text { Eventually }\right]
$$

Elements of Associated Large Deviations

- $S_{\lfloor n t\rfloor}=X_{1}+\ldots+X_{\lfloor n t\rfloor}, \quad X_{k}$'s are i.i.d. with density $f(\cdot)$

Elements of Associated Large Deviations

- $S_{\lfloor n t\rfloor}=X_{1}+\ldots+X_{\lfloor n t\rfloor}, \quad X_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$

Elements of Associated Large Deviations

- $S_{\lfloor n t\rfloor}=X_{1}+\ldots+X_{\lfloor n t\rfloor}, \quad X_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{\top} X_{k}$ and $Z_{k}^{(2)}=v_{2}^{\top} X_{k}$

Elements of Associated Large Deviations

- $S_{\lfloor n t\rfloor}=X_{1}+\ldots+X_{\lfloor n t\rfloor}, \quad X_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{\top} X_{k}$ and $Z_{k}^{(2)}=v_{2}^{T} X_{k}$
- Note $E Z_{k}^{(1)}=v_{1}^{T} \mu<0$ and $E Z_{k}^{(2)}=v_{2}^{T} \mu<0$

Elements of Associated Large Deviations

- $S_{\lfloor n t\rfloor}=X_{1}+\ldots+X_{\lfloor n t\rfloor}, \quad X_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{T} X_{k}$ and $Z_{k}^{(2)}=v_{2}^{T} X_{k}$
- Note $E Z_{k}^{(1)}=v_{1}^{T} \mu<0$ and $E Z_{k}^{(2)}=v_{2}^{T} \mu<0$
- Assume there are $\theta_{1}^{*}, \theta_{2}^{*}>0$ such that

$$
\begin{aligned}
E \exp \left(\theta_{1}^{*} Z_{k}^{(1)}\right) & =1 \& E \exp \left(\theta_{2}^{*} Z_{k}^{(2)}\right)=1 \\
E\left[\exp \left(\theta_{1}^{*} Z_{k}^{(1)}\right) Z_{k}^{(1)}\right] & <\infty \& E\left[\exp \left(\theta_{2}^{*} Z_{k}^{(2)}\right) Z_{k}^{(2)}\right]<\infty
\end{aligned}
$$

Large Deviations for the Stylized Example

- As $n \nearrow \infty$

$$
\begin{aligned}
u_{n}(x) & =P_{x}\left[W_{n}(t) \text { hits } A \text { OR } B\right] \\
& \sim c_{1} \exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right)+c_{2} \exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{\top} x\right)\right) \\
& =\exp (-n h(x)+o(n))
\end{aligned}
$$

where

$$
h(x)=\min \left[\theta_{1}^{*}\left(1-v_{1}^{\top} x\right), \theta_{2}^{*}\left(1-v_{2}^{\top} x\right)\right] .
$$

Agenda

- Review
- Stylized Example: Light-tailed Random Walks
- Control Theory, Harmonic Functions and Doob's h-transform
- Lyapunov Inequalities
- Stylized Example: Heavy-tailed Random Walks

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{\top} X_{k}\right)$

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{\top} X_{k}\right)$
- $f_{\lambda}(x)=\exp \left(\lambda^{T} x-\psi(\lambda)\right) f(x)<-$ Controls

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{\top} X_{k}\right)$
- $f_{\lambda}(x)=\exp \left(\lambda^{\top} x-\psi(\lambda)\right) f(x)<-$ Controls
- I $(z)=\max _{\lambda}\left[\lambda^{T} z-\psi(\lambda)\right]<-$ useful for large deviations

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} X_{k}\right)$
- $f_{\lambda}(x)=\exp \left(\lambda^{T} x-\psi(\lambda)\right) f(x)<-$ Controls
- I $(z)=\max _{\lambda}\left[\lambda^{T} z-\psi(\lambda)\right]<-$ useful for large deviations
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{\top} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{\top} X_{k}\right)$
- $f_{\lambda}(x)=\exp \left(\lambda^{T} x-\psi(\lambda)\right) f(x)<-$ Controls
- I $(z)=\max _{\lambda}\left[\lambda^{T} z-\psi(\lambda)\right]<-$ useful for large deviations
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{\top} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$

$$
\begin{aligned}
0 & \approx \min _{\lambda} \log E\left[e^{-\lambda^{T} X+\psi(\lambda)-n[g(w+X / n)-g(w)]}\right] \\
& \approx \min _{\lambda} \max _{\beta}\left[-\beta^{T}(\lambda+\partial g(w))+\psi(\lambda)-I(\beta)\right]
\end{aligned}
$$

Isaacs Equation for I.S. (Dupuis - Wang)

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{\top} X_{k}\right)$
- $f_{\lambda}(x)=\exp \left(\lambda^{T} x-\psi(\lambda)\right) f(x)<-$ Controls
- $I(z)=\max _{\lambda}\left[\lambda^{T} z-\psi(\lambda)\right]<-$ useful for large deviations
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{\top} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$

$$
\begin{aligned}
0 & \approx \min _{\lambda} \log E\left[e^{-\lambda^{T} X+\psi(\lambda)-n[g(w+X / n)-g(w)]}\right] \\
& \approx \min _{\lambda} \max _{\beta}\left[-\beta^{T}(\lambda+\partial g(w))+\psi(\lambda)-I(\beta)\right]
\end{aligned}
$$

- Game interpretation —> explains Isaacs equation name...

Explicit Solution to the HJB Equation

- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{T} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

Explicit Solution to the HJB Equation

- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{\top} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$

$$
\begin{aligned}
0 & \approx \min _{\lambda} \log E\left[e^{-\lambda^{\top} X+\psi(\lambda)-n[g(w+X / n)-g(w)]}\right] \\
& \approx \min _{\lambda} \log E\left[e^{\left.-\lambda^{\top} X+\psi(\lambda)-\partial g(w) \cdot X\right]}\right] \\
& =\min _{\lambda}[\psi(\lambda)+\psi(-\lambda-\partial g(w))
\end{aligned}
$$

Explicit Solution to the HJB Equation

- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{\top} X+\psi(\lambda)} C_{n}(w+X / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$

$$
\begin{aligned}
0 & \approx \min _{\lambda} \log E\left[e^{-\lambda^{T} X+\psi(\lambda)-n[g(w+X / n)-g(w)]}\right] \\
& \approx \min _{\lambda} \log E\left[e^{\left.-\lambda^{T} X+\psi(\lambda)-\partial g(w) \cdot X\right]}\right] \\
& =\min _{\lambda}[\psi(\lambda)+\psi(-\lambda-\partial g(w))
\end{aligned}
$$

- Solution: $\lambda=-\partial g(w) / 2$ and $\psi(-\partial g(w) / 2)=0$ subject to $g(w)=I(w \in A \cup B)$

Harmonic Functions

- $u_{n}(w)=1$ on $A \cup B$ \& harmonic:

$$
u_{n}(w)=P_{w}\left(T_{A \cup B}<\infty\right)=E\left[u_{n}(w+X / n)\right]
$$

Harmonic Functions

- $u_{n}(w)=1$ on $A \cup B$ \& harmonic:

$$
u_{n}(w)=P_{w}\left(T_{A \cup B}<\infty\right)=E\left[u_{n}(w+X / n)\right]
$$

- Conditioning on $T_{A \cup B}<\infty$ (Doob's h-transform):

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+X / n)}{u_{n}(w)}
$$

Harmonic Functions

- $u_{n}(w)=1$ on $A \cup B$ \& harmonic:

$$
u_{n}(w)=P_{w}\left(T_{A \cup B}<\infty\right)=E\left[u_{n}(w+X / n)\right]
$$

- Conditioning on $T_{A \cup B}<\infty$ (Doob's h-transform):

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+X / n)}{u_{n}(w)}
$$

- Constant likelihood ratio \Longrightarrow zero variance

$$
u_{n}\left(S_{0} / n\right)=\frac{u_{n}\left(S_{0} / n\right)}{u_{n}\left(S_{1} / n\right)} \times \frac{u_{n}\left(S_{1} / n\right)}{u_{n}\left(S_{2} / n\right)} \times \ldots \times \frac{u_{n}\left(S_{T_{A U B}-1} / n\right)}{u_{n}\left(S_{T_{A U B}} / n\right)}
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+y / n)}{u_{n}(w)}
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+y / n)}{u_{n}(w)}
$$

- Approximate sampler $u_{n}(w) \approx \exp (-n h(w))$

$$
\begin{aligned}
& \widetilde{P}\left(Y_{k+1} \in d y \mid S_{k}=n w\right) \\
\approx & f(y) \exp (-n[h(w+y / n)-h(w)]) \\
\approx & f(y) \exp (-\partial h(w) \cdot y)
\end{aligned}
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+y / n)}{u_{n}(w)}
$$

- Approximate sampler $u_{n}(w) \approx \exp (-n h(w))$

$$
\begin{aligned}
& \widetilde{P}\left(Y_{k+1} \in d y \mid S_{k}=n w\right) \\
\approx & f(y) \exp (-n[h(w+y / n)-h(w)]) \\
\approx & f(y) \exp (-\partial h(w) \cdot y)
\end{aligned}
$$

- But

$$
1=\int \widetilde{P}\left(X_{k+1} \in d y \mid S_{k}=n w\right) \Longrightarrow \psi(-\partial h(w))=0
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=f(y) \frac{u_{n}(w+y / n)}{u_{n}(w)}
$$

- Approximate sampler $u_{n}(w) \approx \exp (-n h(w))$

$$
\begin{aligned}
& \widetilde{P}\left(Y_{k+1} \in d y \mid S_{k}=n w\right) \\
\approx & f(y) \exp (-n[h(w+y / n)-h(w)]) \\
\approx & f(y) \exp (-\partial h(w) \cdot y)
\end{aligned}
$$

- But

$$
1=\int \widetilde{P}\left(X_{k+1} \in d y \mid S_{k}=n w\right) \Longrightarrow \psi(-\partial h(w))=0
$$

- Equivalent to Isaacs equation with $g(w)=2 h(w)$-> best asymptotic rate

Dynamic Programming, Isaacs Equation, Harmonic Functions: Summary

Agenda

- Review
- Stylized Example: Light-tailed Random Walks
- Control Theory, Harmonic Functions and Doob's h-transform
- Lyapunov Inequalities
- Stylized Example: Heavy-tailed Random Walks

The Second Moment of a State-dependent Estimator

- Consider sampler

$$
P^{Q}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=r^{-1}(w, w+X / n) f(y) d y
$$

The Second Moment of a State-dependent Estimator

- Consider sampler

$$
P^{Q}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=r^{-1}(w, w+X / n) f(y) d y
$$

- Likelihood ratio

$$
r\left(W_{n}(0), W_{n}(1 / n)\right) \ldots r\left(W_{n}\left(T_{A \cup B}-1\right), W_{n}\left(T_{A \cup B}\right)\right)
$$

The Second Moment of a State-dependent Estimator

- Consider sampler

$$
P^{Q}\left(X_{k+1} \in d y \mid S_{k}=n w\right)=r^{-1}(w, w+X / n) f(y) d y
$$

- Likelihood ratio

$$
r\left(W_{n}(0), W_{n}(1 / n)\right) \ldots r\left(W_{n}\left(T_{A \cup B}-1\right), W_{n}\left(T_{A \cup B}\right)\right)
$$

- Second moment of estimator

$$
s(w)=E[r(w, w+X / n) s(w+X / n)]
$$

subject to $s(w)=1$ for $w \in A \cup B$.

The Lyapunov Inequality

Lemma

B. \& Glynn '08: Lyapunov inequality

$$
v(w) \geq E[r(w, w+X / n) v(w+X / n)]
$$

subject to $v(w) \geq 1$ for $w \in A \cup B$. Then, $v(w) \geq s(w)$.

- How to use the result? 1) Identify a change-of-measure, 2) use heuristic / approx. to force $v(w) \approx u_{n}(w)^{2}$.

Lyapunov Inequalities and Subsolutions

- Subsolutions introduced by Dupuis \& Wang '07

Lyapunov Inequalities and Subsolutions

- Subsolutions introduced by Dupuis \& Wang '07
- Connections to Lyapunov inequalities B. \& Glynn '08

Lyapunov Inequalities and Subsolutions

- Subsolutions introduced by Dupuis \& Wang '07
- Connections to Lyapunov inequalities B. \& Glynn '08
- Lyapunov function $v(w)=\exp (-n g(w)) \& \lambda=-\partial g(w) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} X+\psi(\lambda)\right) \exp (-n[g(w+X / n)-g(w)])\right]
$$

subject to $g(w) \leq 0$ for $w \in A \cup B$. Then, $v(w) \geq s(w)$.

Lyapunov Inequalities and Subsolutions

- Subsolutions introduced by Dupuis \& Wang '07
- Connections to Lyapunov inequalities B. \& Glynn '08
- Lyapunov function $v(w)=\exp (-n g(w)) \& \lambda=-\partial g(w) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} X+\psi(\lambda)\right) \exp (-n[g(w+X / n)-g(w)])\right]
$$

subject to $g(w) \leq 0$ for $w \in A \cup B$. Then, $v(w) \geq s(w)$.

- Expanding as $n \nearrow \infty$ we get

$$
1+O(1 / n) \geq \exp [2 \psi(-\partial g(w) / 2)]
$$

Lyapunov Inequalities and Subsolutions

- Subsolutions introduced by Dupuis \& Wang '07
- Connections to Lyapunov inequalities B. \& Glynn '08
- Lyapunov function $v(w)=\exp (-n g(w)) \& \lambda=-\partial g(w) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} X+\psi(\lambda)\right) \exp (-n[g(w+X / n)-g(w)])\right]
$$

subject to $g(w) \leq 0$ for $w \in A \cup B$. Then, $v(w) \geq s(w)$.

- Expanding as $n \nearrow \infty$ we get

$$
1+O(1 / n) \geq \exp [2 \psi(-\partial g(w) / 2)]
$$

- Yields subsolution to the Isaacs equation (note smoothness)

$$
\psi(-\partial g(w) / 2) \leq 0 \text { s.t. } g(w) \leq 0, w \in A \cup B
$$

The Mollification

- Back to random walk example

$$
\begin{aligned}
h(w) & =\min \left[\theta_{1}^{*}\left(1-v_{1}^{T} w\right), \theta_{2}^{*}\left(1-v_{2}^{T} w\right)\right] \\
& =-\max \left[\theta_{1}^{*}\left(v_{1}^{T} w-1\right), \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right]
\end{aligned}
$$

NOT smooth...

The Mollification

- Back to random walk example

$$
\begin{aligned}
h(w) & =\min \left[\theta_{1}^{*}\left(1-v_{1}^{T} w\right), \theta_{2}^{*}\left(1-v_{2}^{T} w\right)\right] \\
& =-\max \left[\theta_{1}^{*}\left(v_{1}^{T} w-1\right), \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right]
\end{aligned}
$$

NOT smooth...

- Mollification:

$$
\begin{aligned}
& h_{\varepsilon}(w) \\
= & -\varepsilon \log \left[\exp \left(\theta_{1}^{*}\left(v_{1}^{\top} w-1\right) / \varepsilon\right)+\exp \left(\theta_{2}^{*}\left(v_{2}^{T} w-1\right) / \varepsilon\right)\right]
\end{aligned}
$$

The Mollification

- Back to random walk example

$$
\begin{aligned}
h(w) & =\min \left[\theta_{1}^{*}\left(1-v_{1}^{T} w\right), \theta_{2}^{*}\left(1-v_{2}^{T} w\right)\right] \\
& =-\max \left[\theta_{1}^{*}\left(v_{1}^{T} w-1\right), \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right]
\end{aligned}
$$

NOT smooth...

- Mollification:

$$
\begin{aligned}
& h_{\varepsilon}(w) \\
= & -\varepsilon \log \left[\exp \left(\theta_{1}^{*}\left(v_{1}^{T} w-1\right) / \varepsilon\right)+\exp \left(\theta_{2}^{*}\left(v_{2}^{T} w-1\right) / \varepsilon\right)\right]
\end{aligned}
$$

- Implementation via mixtures:

$$
\begin{aligned}
-\partial h_{\varepsilon}(w) & =\theta_{1}^{*} v_{1}^{T} \frac{\eta_{1}^{\varepsilon}(w)}{\eta_{1}^{\varepsilon}(w)+\eta_{2}^{\varepsilon}(w)}+\theta_{2}^{*} v_{2}^{T} \frac{\eta_{2}^{\varepsilon}(w)}{\eta_{1}^{\varepsilon}(w)+\eta_{2}^{\varepsilon}(w)} \\
\eta_{1}^{\varepsilon}(w) & =\exp \left(\theta_{1}^{*}\left(v_{1}^{T} w-1\right) / \varepsilon\right) \\
\eta_{2}^{\varepsilon}(w) & =\exp \left(\theta_{2}^{*}\left(v_{2}^{T} w-1\right) / \varepsilon\right) .
\end{aligned}
$$

The Form of a Typical Optimality Statement...

Theorem (Dupuis \& Wang '07)

Let $g_{\varepsilon_{n}}(w)=2 h_{\varepsilon_{n}}(w)$ and assume that $n \varepsilon_{n} \longrightarrow \infty$ apply corresponding sampler. Then,

2nd Moment of Est. $=\exp (-2 n h(w)+o(n))$.

Lyapunov Inequalities

- Select $\varepsilon_{n}=1 / n$

$$
\begin{aligned}
& \eta_{1}(w)=\exp \left(n \theta_{1}^{*}\left(v_{1}^{T} w-1\right)\right) \\
& \eta_{2}(w)=\exp \left(n \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right)
\end{aligned}
$$

Lyapunov Inequalities

- Select $\varepsilon_{n}=1 / n$

$$
\begin{aligned}
& \eta_{1}(w)=\exp \left(n \theta_{1}^{*}\left(v_{1}^{T} w-1\right)\right) \\
& \eta_{2}(w)=\exp \left(n \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right)
\end{aligned}
$$

- Mixture sampler from density $\widetilde{f}(x)$

$$
\frac{\widetilde{f}(x)}{f(x)}=\frac{\eta_{1}(w)}{\eta_{1}(w)+\eta_{2}(w)} \exp \left(\theta_{1}^{*} v_{1}^{T} x\right)+\frac{\eta_{2}(w)}{\eta_{1}(w)+\eta_{2}(w)} \exp \left(\theta_{2}^{*} v_{2}^{T} x\right)
$$

Lyapunov Inequalities

- Select $\varepsilon_{n}=1 / n$

$$
\begin{aligned}
& \eta_{1}(w)=\exp \left(n \theta_{1}^{*}\left(v_{1}^{T} w-1\right)\right) \\
& \eta_{2}(w)=\exp \left(n \theta_{2}^{*}\left(v_{2}^{T} w-1\right)\right)
\end{aligned}
$$

- Mixture sampler from density $\widetilde{f}(x)$

$$
\frac{\widetilde{f}(x)}{f(x)}=\frac{\eta_{1}(w)}{\eta_{1}(w)+\eta_{2}(w)} \exp \left(\theta_{1}^{*} v_{1}^{T} x\right)+\frac{\eta_{2}(w)}{\eta_{1}(w)+\eta_{2}(w)} \exp \left(\theta_{2}^{*} v_{2}^{T} x\right)
$$

- Lyapunov function

$$
v(w)=\left(\eta_{1}(w)+\eta_{2}(w)\right)^{2} \geq 1
$$

for $v_{1}^{T} w \geq 1$ OR $v_{2}^{T} w \geq 1 \ldots$ BOUNDARY CONDITION OK!

A Lyapunov Inequality

$$
\begin{aligned}
v(w) & =\left[\eta_{1}(w)+\eta_{2}(w)\right]^{2} \\
\eta_{1}(w+X / n) & =\eta_{1}(w) e^{\theta^{*} v_{1}^{T} X} \\
\eta_{2}(w+X / n) & =\eta_{2}(w) e^{\theta^{*} v_{2}^{T} X}
\end{aligned}
$$

A Lyapunov Inequality

$$
\begin{gathered}
v(w)=\left[\eta_{1}(w)+\eta_{2}(w)\right]^{2} \\
\eta_{1}(w+X / n)=\eta_{1}(w) e^{\theta^{*} v_{1}^{T} X} \\
\eta_{2}(w+X / n)=\eta_{2}(w) e^{\theta^{*} v_{2}^{T} X} \\
E \frac{v(w+X / n)}{v(w)} \frac{1}{\frac{\eta_{1}(w)}{\eta_{1}(w)+\eta_{2}(w)} e^{\theta_{1}^{*} v_{1}^{T} X}+\frac{\eta_{2}(w)}{\eta_{1}(w)+\eta_{2}(w)} e^{\theta_{2}^{*} v_{2}^{\top} X}} \\
=E \frac{\eta_{1}(w) \exp \left(\theta_{1}^{*} v_{1}^{T} X\right)+\eta_{2}(w) \exp \left(\theta_{2}^{*} v_{2}^{T} X\right)}{\eta_{1}(w)+\eta_{2}(w)}=1 .
\end{gathered}
$$

Theorem (B., Glynn and Leder (2009))

One can take $\varepsilon=1$ /n as mollification parameter \& in fact this is the optimal choice as it gives bounded coef. of variation

$$
\text { 2nd Moment } \leq\left(v_{1}(0)+v_{2}(0)\right)^{2} \leq c u_{n}(0)^{2}
$$

Agenda

- Review
- Stylized Example: Light-tailed Random Walks
- Control Theory, Harmonic Functions and Doob's h-transform
- Lyapunov Inequalities
- Stylized Example: Heavy-tailed Random Walks

Setup

- Let X_{1}, X_{2}, \ldots are heavy-tailed (TBD) and $E X_{i}=\mu<0$
- $S_{n}=X_{1}+\ldots+X_{n}$ given $S_{0}=s$
- Object of interest:

$$
u_{b}(s)=P_{s}\left(T_{b}<\infty\right)=\frac{\int_{b-s}^{\infty} P\left(X_{i}>u\right) d u}{-\mu}(1+o(1))
$$

as $b-s / \infty$.

- Asymptotics: Pakes, Veraberbeke, Cohen... see text of Asmussen '03

Basics on Heavy-tails

- Rich theory for heavy-tailed random walks based on subexponentiality

$$
P\left(X_{1}+X_{2}>b\right)=2 P\left(X_{1}>b\right)(1+o(1))
$$

as $b \longrightarrow \infty$.

- Focus on regularly varying distributions (basically power-law type)

$$
P\left(X_{1}>t\right)=t^{-\alpha} L(t)
$$

for $\alpha>1$ and $L(t \beta) / L(t) \longrightarrow 1$ as $t \nearrow \infty$ for each $\beta>0$.

State-dependent Importance Sampling

- Importance sampling: Markov kernel $K(\cdot)$

$$
K\left(s_{0}, s_{1}\right)=r^{-1}\left(s_{0}, s_{1}\right) f_{X_{1}}\left(s_{1}-s_{0}\right)
$$

State-dependent Importance Sampling

- Importance sampling: Markov kernel $K(\cdot)$

$$
K\left(s_{0}, s_{1}\right)=r^{-1}\left(s_{0}, s_{1}\right) f_{X_{1}}\left(s_{1}-s_{0}\right)
$$

- Importance sampling estimator: S_{n} 's simulated under $K(\cdot)$

$$
Z=\prod_{j=1}^{T_{b}-1} r\left(S_{j}, S_{j+1}\right) I\left(T_{b}<\infty\right)
$$

State-dependent Importance Sampling

- Importance sampling: Markov kernel $K(\cdot)$

$$
K\left(s_{0}, s_{1}\right)=r^{-1}\left(s_{0}, s_{1}\right) f_{X_{1}}\left(s_{1}-s_{0}\right)
$$

- Importance sampling estimator: S_{n} 's simulated under $K(\cdot)$

$$
Z=\prod_{j=1}^{T_{b}-1} r\left(S_{j}, S_{j+1}\right) /\left(T_{b}<\infty\right)
$$

- Recall to get good variance: Select an IS that mimics the conditional distribution.

Description of the Conditional Distribution

Theorem

(Asmussen and Kluppelberg): Conditional on $T_{b}<\infty$, we have that

$$
\left(\frac{S_{u T_{b}}}{T_{b}}, \frac{S_{T_{b}}-b}{b}, \frac{T_{b}}{b}\right) \Longrightarrow\left(\mu u, Z_{1}, Z_{2}\right)
$$

on $D(0,1) \times R \times R$ as $b \nearrow \infty$, where Z_{1} and Z_{2} are Pareto with index $\alpha-1$.

- Interpretation: Prior to ruin, random walk has drift μ and a large jump of size b occurs suddenly in $O(b)$ time...

Description of the Conditional Distribution

Theorem

(Asmussen and Kluppelberg): Conditional on $T_{b}<\infty$, we have that

$$
\left(\frac{S_{u T_{b}}}{T_{b}}, \frac{S_{T_{b}}-b}{b}, \frac{T_{b}}{b}\right) \Longrightarrow\left(\mu u, Z_{1}, Z_{2}\right)
$$

on $D(0,1) \times R \times R$ as $b \nearrow \infty$, where Z_{1} and Z_{2} are Pareto with index $\alpha-1$.

- Interpretation: Prior to ruin, random walk has drift μ and a large jump of size b occurs suddenly in $O(b)$ time...
- So, given that a jump hasn't occurred by time k, then $S_{k} \approx \mu k$ and the chance of reaching b in the next increment given that we eventually reach $b\left(T_{b}<\infty\right)$

$$
\frac{P(X>b-\mu k)}{\int_{0}^{\infty} P(X>b-\mu u) d u} \approx \frac{-\mu P(X>b-\mu k)}{\int_{b}^{\infty} P(X>s) d u}=O\left(\frac{1}{b}\right)
$$

Good Family of Changes of Measure for Heavy Tails

- Change-of-measure: Here s is current position of the walk, f is the density

$$
\begin{aligned}
f_{X \mid s}(x \mid s)= & p(s) \frac{f_{X}(x) I(x>a(b-s))}{P(X>a(b-s))} \\
& +(1-p(s)) \frac{f_{X}(x) I(x \leq a(b-s))}{P(X>a(b-s))}
\end{aligned}
$$

- In other words, $s_{0}=s$ and $s_{1}=s_{0}+x$

$$
\begin{aligned}
r\left(s_{0}, s_{1}\right)^{-1}= & p\left(s_{0}\right) \frac{I\left(s_{1}-s_{0}>a\left(b-s_{0}\right)\right)}{P\left(X>a\left(b-s_{0}\right)\right)} \\
& +\left(1-p\left(s_{1}\right)\right) \frac{I\left(s_{1}-s_{0} \leq a\left(b-s_{0}\right)\right)}{P\left(X \leq a\left(b-s_{0}\right)\right)}
\end{aligned}
$$

- Introduced by Dupuis, Leder and Wang '06 for finite sums...

Lyapunov Inequality

- Recall Lyapunov inequality

Lemma (B. \& Glynn '08)

Suppose that there is a positive function $g(\cdot)$ such that

$$
E_{s}^{K}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)^{2}}{g(s)}\right)=E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \leq 1
$$

for all $s \leq b$ and $g(s) \geq 1$ for $s>b$. Then,

$$
E_{s}^{K} Z^{2}=E_{s}^{K}\left(\prod_{j=1}^{T_{b}-1} r\left(S_{j}, S_{j+1}\right)^{2} I\left(T_{b}<\infty\right)\right) \leq g(s)
$$

Constructing Lyapunov Functions for Heavy-tails

- Wish to achieve strong efficiency, so we pick (for some $\kappa>0$)

$$
g(s)=\min \left(\kappa\left(\int_{b-s}^{\infty} P(X>u) d u\right)^{2}, 1\right)
$$

Constructing Lyapunov Functions for Heavy-tails

- Wish to achieve strong efficiency, so we pick (for some $\kappa>0$)

$$
g(s)=\min \left(\kappa\left(\int_{b-s}^{\infty} P(X>u) d u\right)^{2}, 1\right)
$$

- Pick for some $\theta>0$

$$
p(s)=\theta \frac{P(X>b-s)}{\int_{b-s}^{\infty} P(X>s) d u}
$$

Constructing Lyapunov Functions for Heavy-tails

- Wish to achieve strong efficiency, so we pick (for some $\kappa>0$)

$$
g(s)=\min \left(\kappa\left(\int_{b-s}^{\infty} P(X>u) d u\right)^{2}, 1\right)
$$

- Pick for some $\theta>0$

$$
p(s)=\theta \frac{P(X>b-s)}{\int_{b-s}^{\infty} P(X>s) d u}
$$

- Must select κ and θ to verify Lyapunov inequality

Testing the Lyapunov Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
= & \frac{E(g(s+X) ; X>a(b-s)) P(X>a(b-s))}{p(s) g(s)} \\
& +\frac{E(g(s+X) ; X \leq a(b-s)) P(X \leq a(b-s))}{(1-p(s)) g(s)}
\end{aligned}
$$

Testing the Lyapunov Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
= & \frac{E(g(s+X) ; X>a(b-s)) P(X>a(b-s))}{p(s) g(s)} \\
& +\frac{E(g(s+X) ; X \leq a(b-s)) P(X \leq a(b-s))}{(1-p(s)) g(s)} \\
\leq & \frac{P(X>a(b-s))^{2}}{p(s) g(s)}+\frac{E(g(s+X) ; X \leq a(b-s))}{(1-p(s)) g(s)}
\end{aligned}
$$

Testing the Lyapunov Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
\leq & \frac{P(X>a(b-s))^{2}}{p(s) g(s)}+\frac{E(g(s+X) ; X \leq a(b-s))}{(1-p(s)) g(s)} \\
\approx & \frac{a^{-\alpha} P(X>a(b-s))}{\theta \kappa \int_{b-s}^{\infty} P(X>u) d u}+1+2(\mu+\theta) \frac{P(X>(b-s))}{\left(\int_{b-s}^{\infty} P(X>u) d u\right)}
\end{aligned}
$$

- NOTE: crucial that $\mu<0$! Pick θ small and κ large

$$
\frac{a^{-\alpha}}{\theta \kappa}+2 \theta+2 \mu \leq 0
$$

Summary and Conclusions

- State-dependent Importance Sampling: Choose RIGHT parametric family of distributions (or controls)

Summary and Conclusions

- State-dependent Importance Sampling: Choose RIGHT parametric family of distributions (or controls)
- Find subsolutions / Lyapunov inequalities to enforce optimality (involves course approximation)

Summary and Conclusions

- State-dependent Importance Sampling: Choose RIGHT parametric family of distributions (or controls)
- Find subsolutions / Lyapunov inequalities to enforce optimality (involves course approximation)
- Lyapunov inequalities apply to light and heavy tails

Summary and Conclusions

- State-dependent Importance Sampling: Choose RIGHT parametric family of distributions (or controls)
- Find subsolutions / Lyapunov inequalities to enforce optimality (involves course approximation)
- Lyapunov inequalities apply to light and heavy tails
- Construct Lyapunov function from course large deviations analysis

Summary and Conclusions

- State-dependent Importance Sampling: Choose RIGHT parametric family of distributions (or controls)
- Find subsolutions / Lyapunov inequalities to enforce optimality (involves course approximation)
- Lyapunov inequalities apply to light and heavy tails
- Construct Lyapunov function from course large deviations analysis
- Lyapunov inequalities guide selection of mollification parameters and guarantee good performance

References

- Blanchet, J., Glynn, P. and Liu, J. C. (2007) Fluid heuristics, Lyapunov bounds and efficient importance sampling for a heavy-tailed G/G/1 queue. QUESTA. 57, 99-113.
- Blanchet, J. and Glynn, P. (2008) Efficient rare-event simulation for the maximum of a heavy-tailed random walk. Ann. of Appl. Probab. 18, 1351-1378.
- Dupuis, P. and Wang, H. (2004) Importance sampling, large deviations, and differential games. Stoch. and Stoch. Reports. 76, 481-508.
- Dupuis, P. and Wang, H. (2007) Subsolutions of an Isaacs equation and efficient schemes of importance sampling. Mathematics of Operations Research. 32, 723-757.

