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Rare Event Analysis: Areas of Applicability

Rare events are consequential in many areas

Insurance / Finance

Congestion models (queues)

Environmental applications

Search problems

Reliabiliaty models

Statistics
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Why are Rare Events Di¢ cult to Assess?

Typically no closed forms (complex systems)

But crudely implemented simulation might not be good

1

10
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Why are Rare Events Di¢ cult to Assess?

Relative mean squared error (RMSE) PER TRIAL = stdev / meanp
P (RED) (1� P (RED))

P (RED)
� 1p

P (RED)
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Performance Analysis

General Focus: Estimate P (A) assuming P (A) � 0.

Goal : Design estimator so that relative mean squared error
(RMSE) is controlled
STRONG EFFICIENCY:

RMSE for P (A) = O (1)

WEAK EFFICIENCY: For each ε > 0

RMSE for P (A) = O
�
1/P (A)ε�
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Graphical Interpretation of Importance Sampling

Importance sampling (I.S.): sample from the important region and
correct via likelihood ratio

RED AREA � PROPORTION DARTS IN RED AREA� 1
9

0 1

1

0 1

1
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Importance Sampling

Goal: Estimate P (A) > 0

Choose eP and simulate ω from it

Importance Sampling (I.S.) estimator per trial is

I .S .Estimator = L (ω) I (ω 2 A) ,

where L (ω) is the likelihood ratio (i.e. L (ω) = P (ω) /eP (ω)).
NOTE: eP is called a change-of-measure
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Importance Sampling

Suppose we choose eP (�) = P ( �jA)
L (ω) =

P (ω) I (ω 2 A)
P (ω) I (ω 2 A) /P (A)

= P (A)

Estimator has zero variance, but requires knoweledge of P (A)

Lesson: Try choosing eP (�) close to P ( �jA)!
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Insurance

Vi�s i.i.d. (independent and identially distributed) claim sizes

τi�s i.i.d. inter-arrival times

An = time of the n-th arrival

Constant premium p

Reserve process

R (t) = b+ pt �
N (t)

∑
j=1

Vj

N (t) = # arrivals up to time t
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Insurance

Plot of risk reserve

R(t)

t

b

A2 A3A1
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Insurance

Evaluating reserve at arrival times we get random walk

Suppose Y1,Y2, ... are i.i.d.

S (n) = b+ Y1 + ...+ Yn

R (An) = S (n) reserve at arrival times with Yn = pτn � Vn.

R(t)

t

b
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Insurance Process Conditioned on Ruin

Yi�s are N(1, 1), EYi = 1

Random walk conditioned on ruin
Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Picture generated with Siegmund�s 76 algorithm

Blanchet (Columbia) Monte Carlo and Rare Events 15 / 43



Insurance Process Conditioned on Ruin

Yi�s are N(1, 1), EYi = 1
Random walk conditioned on ruin

Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Picture generated with Siegmund�s 76 algorithm

Blanchet (Columbia) Monte Carlo and Rare Events 15 / 43



Insurance Process Conditioned on Ruin

Yi�s are N(1, 1), EYi = 1
Random walk conditioned on ruin
Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.

Picture generated with Siegmund�s 76 algorithm

Blanchet (Columbia) Monte Carlo and Rare Events 15 / 43



Insurance Process Conditioned on Ruin

Yi�s are N(1, 1), EYi = 1
Random walk conditioned on ruin
Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Picture generated with Siegmund�s 76 algorithm

Blanchet (Columbia) Monte Carlo and Rare Events 15 / 43



Light Tails Setting: Asymptotic Conditional Distributions

In light-tailed cases there is large deviations theory (ref. Dembo and
Zeitouni �99).

Large deviations allows to obtain as b % ∞

P (Y1 � x , ...,Yk � x j ruin starting at b) � eP (Y1 � x) ...eP (Yk � x) ,
Suggested change-of-measure: Sample Yk�s i.i.d. using eP (�)

L =
p (Y1)ep (Y1) � p (Y2)ep (Y2) � ... � p (Yruin time)ep (Yruin time) .
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Light Tails Setting: Exponential Tilting

More precisely if p (�) is the density of Yiep (y) = p (y) exp (θ�y)
where θ� < 0 solves ψ (θ�) = log E exp (θ�Yi ) = 0.
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Siegmund�s Algorithm for Random Walks

Theorem (Siegmund �76)

Assume ψ (θ� � δ) < ∞ for some δ > 0. Then, the estimator

L =
p (Y1)ep (Y1) � p (Y2)ep (Y2) � ... � p (Yruin time)ep (Yruin time)

= exp (�θ�[Y1 + ...+ Yruin time])

is STRONGLY EFFICIENT. Moreover, ep (�) is the ONLY
STATE-INDEPENDENT change-of-measure that achieves e¢ ciency.
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Moral of the Story for Light Tails...

1 Asymptotic conditional distribution well described using Large
Deviations theory

2 Description in terms of exponential tilting � > fundamental family of
changes-of-measure

3 Items 1) and 2) provide systematic tools for rare-event simulation
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Description of Systematic Approach

State-dependent random walk: t 2 f0,∆, 2∆, ...g

Yt+∆ = Yt + ∆Xt+∆ (Yt )

Given Yt = y , Xt+∆ (y) is random variable with �nite moment
generating function

ψ (θ, y) = log E [exp (θXt+∆ (y))]

As ∆ �! 0 under mild assumptions Y� �! y (�) so that

ẏ (t) = E [X (y(t))].
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Fluid Limit of State-dependent Random Walk
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Description of Systematic Approach

Given z (t) described by an ODE so that z (t) 6= y (t) one often has

P (Yt � z (t)) � exp (�J (z) /∆)

Associated Legendre transform

I (z , y) = sup
θ
[θz � ψ (θ, y)]

Associated action integral

J (z) =
Z ∞

0
I (ż (t) , z (t)) dt.
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Description of Systematic Approach

A generic rare-event estimation problem:

∆ logP (Hit B prior to A)
� � inffJ (z) : z (�) is path that hits B prior to Ag

Solution z� (�) is called �optimal path�
Tracking optimal path: Optimal Exponential Tilting θ� (t) solves

∂

∂θ
ψ (θ�(t), z� (t)) = ż� (t) .
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Description of Systematic Approach
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Description of Systematic Approach

Tracking optimal path: Optimal Exponential Tilting θ� (t) solves

∂

∂θ
ψ (θ�(t), z� (t)) = ż� (t) .

Importance Sampling Strategy:

1 At time t apply exponential tilting θ� (t) � > Corresponds to a
so-called open-loop control (no feedback)...

2 Follow path to approximate z� (t)...

Blanchet (Columbia) Monte Carlo and Rare Events 26 / 43



Description of Systematic Approach

Tracking optimal path: Optimal Exponential Tilting θ� (t) solves

∂

∂θ
ψ (θ�(t), z� (t)) = ż� (t) .
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Example: Two dimensional AR(1) Process

Model: Yt+∆ � Yt = �∆Yt + ∆Xt+∆, Xt�s i.i.d. N (0, I ) and
y0 = (1, 1).

Estimate: Py0 (TB < TA), with
B = fx :




x � (e + 1/
p
2, e + 1/

p
2)




2
� 1g &

A = fx : jjx jj2 � 1g.
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Example: Computing the Optimal Path

Calculus of Variations Problem:

min
z2C

1
2

Z T

0
jjż (t) + z (t)jj22 dt

where

C = fz : z (0) = (1, 1) ,



z (T )� (e + 2�1/2)(1, 1)





2
� 1,

T < ∞, kz (t)k2 > 1, t < Tg

Solution:

z (t) = (exp (t) , exp (t))

ż (t) = z (t) .
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Interpreting the Change-of-Measure

Importance Sampling Q: Wt is i.i.d. N(0,1) under Q

Yt+∆ � Yt = ż (t)∆+ ∆Wt+∆ =) Fluid dyt � ż (t) dt
Y0 = (1, 1) ,

Xt+∆ = Wt+∆ + (ż (t) + Yt ).

Likelihood ratio dP/dQ:

L0 = exp

 
�
TB/∆�1

∑
j=0

(ż (j∆) + Yj∆) � X(j+1)∆ +
TB/∆�1

∑
j=0

kż (j∆) + Yj∆k22
2

!

Importance sampling estimator:

IS Estimator=L0 � I (TB < TA)
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Likelihood ratio dP/dQ:

L0 = exp

 
�
TB/∆�1

∑
j=0
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Another Interpretation

Importance Sampling Q: Wt is Brownian motion under Q

Yt+∆ � Yt = Yt∆+ ∆Wt+∆ =) Fluid dy (t) � y (t) dt,
Y0 = ∆ (1, 1)T ,

Xt+∆ = Wt+∆ + 2Yt .

Likelihood ratio dP/dQ:

L = exp

 
�
TB/∆�1

∑
j=0

2Y(j∆) � X(j+1)∆ +
TB/∆�1

∑
j=0

2



Y(j∆)


2

2

!

Importance sampling estimator:

IS Estimator=L� I (TB < TA)
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Asymptotic Optimality

First note: Yt+∆ � Yt = �∆Yt + ∆Xt+∆ =)


Y(j+1)∆


2
2
� kYj∆k22

∆
= �2 kYj∆k22 + 2Y(j∆) � X(j+1)∆

+∆



X(j+1)∆ � Yj∆


2

2
.

Get likelihood ratio representation:

L = exp

 
�
TB/∆�1

∑
j=0

2Y(j∆) � X(j+1)∆ +
TB/∆�1

∑
j=0

2



Y(j∆)


2

2

!

= exp

 
�kYTB k

2
2 /∆+ ky0k22 /∆+ ∆

TB/∆�1
∑
j=0




W(j+1)∆ + Yj∆



2
2

!
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Asymptotic Optimality

Bound Likelihood ratio:

L � exp
�
� inf
y2B

kyk22 /∆+ ky0k22 /∆+Op (1)
�

Second moment of estimator:

EQ [L2� I (TB < TA)] = exp
�
�2
�
inf
y2B

kyk22 � ky0k
2
2

�
/∆+ o (1/∆)

�
.

Asymptotic Optimality follows since:

Py0 (TB < TA) = exp
�
�
�
inf
y2B

kyk22 � ky0k
2
2

�
/∆+ o (1/∆)

�
.
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Agenda

Introduction

A Simple Random Walk Example

Systematic Approach

E¢ ciency Argument

Counter-examples, Heavy-tails and Beyond
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Counter-examples

Model: Yt = (�1,�1)t + Xt ; Xt is Brownian motion &
Bb = f(x , y) : x � a0b or y � a1bg

Estimate: u (b) = P (TBb < ∞) as b % ∞
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Counter-examples

Known result: As b % ∞

u (b) = exp (�2bminfa0, a1g) (1+ o (1)).

Optimal Path:

y (t) =
�
t � (1,�1) if a0 < a1
t � (�1, 1) if a1 < a0

.

Let us assume a0 < a1...
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Counter-examples

Change-of-measure Q0: Brownian Motion with drift (1,�1).
Second Moment of Estimator:

2nd Moment = EQ [exp
�
� (4, 0) � XTBb

�
I (TBb < ∞)]

= E [exp
�
� (2, 0)XTBb

�
I (TBb < ∞)].
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Counter-examples

What happens if a path exits Ab = f(x , y) : y � a1bg?
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Counter-examples

Lower bound:

2nd Mnt � E [exp
�
�2X (1)TAb

�
I (TBb < ∞,TAb = TBb )]

= EQ1 [exp
�
�2X (1)TAb

� 2a1b
�
I (TAb = TBb )],

where Q1 is change-of-measure yielding Brownian Motion with drift
(�1, 1).

Note that X (1)TAb
� �a0a1b and TAb = TBb under Q1

Consequently: 2nd Moment at least roughly

exp (�2a1b (1� a0))

Can easily pick a0 < a1 to break asymptotic optimality and even
get HUGE variance!!
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Heavy-tails...

Model: Random walk...

Sn = X1 + ...+ Xn,

Xi�s i.i.d. heavy tailed

Typical example: Regular variation

P (Xi > t) = L (t) t�α

for α > 0 and L (tβ) /L (t) �! 1 as t ! ∞ for β > 0 (e.g.
L (t) = log(1+ t)).

Note E exp (θX1) = ∞ for θ > 0.
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Heavy-tails...

Consider estimating: P (Tb < ∞), Tb = inffn � 0 : Sn > bg

Xi�s i.i.d. reg. varying & EXi < 0

Turns out that

P (Xj � y jTb < ∞) �! P (Xj � y)

No clear way to mimic zero variance change-of-measure!
No clear way to apply the systematic approach!
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Solution? State-dependent Importance Sampling

As we shall see these examples can be addressed using

State� dependent importance sampling

which we will study in the second part of this lecture...
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Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43



Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43



Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43



Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43



Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43



Summary and Conclusions

Importance sampling is a useful techinque for rare-event estimation

Zero-variance importance sampler = conditional distribution given
rare event

Light-tailed problems: Fundamental family given by exponential
tiltings

Large deviations helps approximate the conditional distribution given
rare event

Optimal path in large deviations dictates tilting (several ways of
interepreting)

Approach fails (badly!) in non-convex problems and in heavy-tailed
situations

Blanchet (Columbia) Monte Carlo and Rare Events 43 / 43


	Efficient Simulation for Rare Events
	Introduction and Generalities

