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Rare Event Analysis: Areas of Applicability

Rare events are consequential in many areas

@ Insurance / Finance
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Rare Event Analysis: Areas of Applicability

Rare events are consequential in many areas

Insurance / Finance

Congestion models (queues)

°
°
@ Environmental applications
@ Search problems

°

Reliabiliaty models

@ Statistics
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Why are Rare Events Difficult to Assess?

e Typically no closed forms (complex systems)

@ But crudely implemented simulation might not be good

| ®
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Why are Rare Events Difficult to Assess?

o Relative mean squared error (RMSE) PER TRIAL = stdev / mean

JVP(RED) (I - P(RED)) 1
P (RED) ~ /P (RED)
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Performance Analysis

o General Focus: Estimate P (A) assuming P (A) ~ 0.
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Performance Analysis

o General Focus: Estimate P (A) assuming P (A) ~ 0.

@ Goal: Design estimator so that relative mean squared error
(RMSE) is controlled

o STRONG EFFICIENCY:
RMSE for P (A) = O (1)
e WEAK EFFICIENCY: For each ¢ > 0

RMSE for P (A) = O (1/P (A))
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Graphical Interpretation of Importance Sampling

o Importance sampling (1.S.): sample from the important region and
correct via likelihood ratio

RED AREA ~ PROPORTION DARTS IN RED AREA x é
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Importance Sampling

e Goal: Estimate P (A) >0
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Importance Sampling

e Goal: Estimate P(A) >0
@ Choose P and simulate w from it

e Importance Sampling (1.S.) estimator per trial is
1.S.Estimator = L (w) | (w € A),

where L (w) is the likelihood ratio (i.e. L(w) = P (w) /P (w)).
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Importance Sampling

e Goal: Estimate P(A) >0
@ Choose P and simulate w from it

e Importance Sampling (1.S.) estimator per trial is
1.S.Estimator = L (w) | (w € A),

where L (w) is the likelihood ratio (i.e. L(w) = P (w) /P (w)).

o NOTE: P is called a change-of-measure
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Importance Sampling

e Suppose we choose P () = P (-| A)

B P(w)l(w € A)
 P(w) I (weA)/P(A)

L(w) = P(A)
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Importance Sampling

e Suppose we choose P () = P (-| A)

B P(w)l(w € A)
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Importance Sampling

e Suppose we choose P () = P (-| A)

B P(w)l(w € A)
 P(w) I (weA)/P(A)

L(w) = P(A)

e Estimator has zero variance, but requires knoweledge of P (A)

e Lesson: Try choosing P (-) close to P (-| A)!

Blanchet (Columbia) Monte Carlo and Rare Events 10 / 43



Introduction
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Systematic Approach

Testing Efficiency

Counter-examples, Heavy-tails and Beyond
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Insurance

e Vi'sii.d. (independent and identially distributed) claim sizes
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Insurance

e Vi'sii.d. (independent and identially distributed) claim sizes
@ T;'si.i.d. inter-arrival times
@ A, = time of the n-th arrival
e Constant premium p
@ Reserve process
N(t)
R(t)=b+pt— ) V
j=1
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Insurance

e Vi'sii.d. (independent and identially distributed) claim sizes
@ T;'si.i.d. inter-arrival times
@ A, = time of the n-th arrival
e Constant premium p
@ Reserve process
N(t)
R(t)=b+pt— ) V
j=1

e N (t) = # arrivals up to time t
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Insurance

Plot of risk reserve

R(t)
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Insurance

o Evaluating reserve at arrival times we get random walk
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@ Suppose Y1, Ys, ... arei.i.d.
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Insurance

o Evaluating reserve at arrival times we get random walk
@ Suppose Y1, Ys, ... arei.i.d.

S(n)=b+Yi+..+Y,
e R(A,) = S(n) reserve at arrival times with Y, = pt, — V.
R()

o
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Insurance Process Conditioned on Ruin

Ruin with Gaussian Increments
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e Yi'sare N(1,1), EY; =1
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Insurance Process Conditioned on Ruin

Ruin with Gaussian Increments
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e Yi'sare N(1,1), EY; =1
@ Random walk conditioned on ruin

Blanchet (Columbia) Monte Carlo and Rare Events



Insurance Process Conditioned on Ruin

Ruin with Gaussian Increments
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e Yi'sare N(1,1), EY; =1
@ Random walk conditioned on ruin
o Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
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Insurance Process Conditioned on Ruin

Ruin with Gaussian Increments
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Yi'sare N(1,1), EY; =1

Random walk conditioned on ruin

Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Picture generated with Siegmund’s 76 algorithm
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Light Tails Setting: Asymptotic Conditional Distributions

@ In light-tailed cases there is large deviations theory (ref. Dembo and
Zeitouni '99).
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Light Tails Setting: Asymptotic Conditional Distributions

@ In light-tailed cases there is large deviations theory (ref. Dembo and
Zeitouni '99).

@ Large deviations allows to obtain as b " oo
P(Y: <x, ..., Yk < x| ruin starting at b) ~ P (Y; < x)..P (Y, < x),

e Suggested change-of-measure: Sample Yj's i.i.d. using P (-)

pPM) p(Y2) P (Yuuin time)

5(Y1) ﬁ(y2) 5(Yruintime).

L=
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Light Tails Setting: Exponential Tilting

@ More precisely if p (-) is the density of Y;

P(y) =p(y)exp(6.y)
where 6, < 0 solves ¢ (68.) = log E exp (6. Y;) = 0.

W(0o) J,
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Siegmund’s Algorithm for Random Walks

Theorem (Siegmund '76)
Assume 1 (6, — ) < oo for some & > 0. Then, the estimator
L — P(Yl)P(Yz) .p(Yruintime)

I~7(Y1) 5(Y2) I~3(Yruin time)
exp (—0x[Y1 + ... + Yiuin time])

is STRONGLY EFFICIENT. Moreover, p (-) is the ONLY
STATE-INDEPENDENT change-of-measure that achieves efficiency.
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Moral of the Story for Light Tails...

@ Asymptotic conditional distribution well described using Large
Deviations theory
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Moral of the Story for Light Tails...

@ Asymptotic conditional distribution well described using Large
Deviations theory

@ Description in terms of exponential tilting —> fundamental family of
changes-of-measure

@ Items 1) and 2) provide systematic tools for rare-event simulation
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Introduction

A Simple Random Walk Example
Systematic Approach
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Description of Systematic Approach

o State-dependent random walk: t € {0,A, 24, ...}

Yeta = Ye + AXeya (Ye)
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Description of Systematic Approach

o State-dependent random walk: t € {0,A, 24, ...}
Yeta = Ye + AXeya (Ye)

e Given Y; =y, Xi1a (y) is random variable with finite moment
generating function

¥ (0,y) = log Elexp (6 X;4a (¥))]
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Description of Systematic Approach

o State-dependent random walk: t € {0,A, 24, ...}
Yeta = Ye + AXeya (Ye)

e Given Y; =y, Xi1a (y) is random variable with finite moment
generating function

P (0,y) = log E[exp (6Xt1a (¥))]

@ As A — 0 under mild assumptions Y. — y (+) so that
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Fluid Limit of State-dependent Random Walk

State space in 2 dimensions

Blanchet (Columbia) Monte Carlo and Rare Events



Description of Systematic Approach

@ Given z (t) described by an ODE so that z (t) # y (t) one often has

P(Yirz (1) = exp(—J(z) /4)
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Description of Systematic Approach

@ Given z (t) described by an ODE so that z (t) # y (t) one often has
P(Y:=~z(t)) ~exp(—J(z)/A)
@ Associated Legendre transform

I(z,y) = St;p[ez —9(0,y)]

Blanchet (Columbia) Monte Carlo and Rare Events



Description of Systematic Approach

@ Given z (t) described by an ODE so that z (t) # y (t) one often has
P(Y:=~z(t)) ~exp(—J(z)/A)
@ Associated Legendre transform

I(z,y) = St;p[GZ —9(0,y)]

@ Associated action integral
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Description of Systematic Approach

@ A generic rare-event estimation problem:

Alog P (Hit B prior to A)
~ —inf{J(z):z(-) is path that hits B prior to A}
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Description of Systematic Approach

@ A generic rare-event estimation problem:

Alog P (Hit B prior to A)
~ —inf{J(z):z(-) is path that hits B prior to A}

@ Solution z* (-) is called “optimal path”
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Description of Systematic Approach

@ A generic rare-event estimation problem:

Alog P (Hit B prior to A)
~ —inf{J(z):z(-) is path that hits B prior to A}

@ Solution z* (-) is called “optimal path”
e Tracking optimal path: Optimal Exponential Tilting 6. (t) solves

J * I
5P (0:(1). 27 (1)) = 2" (1).
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Description of Systematic Approach

State space in 2 dimensions
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Description of Systematic Approach

e Tracking optimal path: Optimal Exponential Tilting 6. (t) solves

J * o ox
S 00,2 () =2 (1),
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Description of Systematic Approach

e Tracking optimal path: Optimal Exponential Tilting 6. (t) solves

d * o o¥
50 (0:(2), 27 (8)) = 2" (1)

o Importance Sampling Strategy:
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Description of Systematic Approach

e Tracking optimal path: Optimal Exponential Tilting 6. (t) solves

d * o o¥
50 (0:(2), 27 (8)) = 2" (1)

o Importance Sampling Strategy:

Q At time t apply exponential tilting 6. (t) —> Corresponds to a
so-called open-loop control (no feedback)...
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Description of Systematic Approach

e Tracking optimal path: Optimal Exponential Tilting 6. (t) solves

d * o o¥
50 (0:(2), 27 (8)) = 2" (1)

o Importance Sampling Strategy:

Q At time t apply exponential tilting 6. (t) —> Corresponds to a
so-called open-loop control (no feedback)...
@ Follow path to approximate z* (t)...
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Example: Two dimensional AR(1) Process

e Model: Y, ip — Y: = —AY:+ AXpa, Xi'siiid. N(0,/) and
yo = (1,1).

e Estimate: P, (Tg < T,), with
B={x: Hx— (e+1/ﬁ,e+1/ﬁ)H2 <1} &
A= {x:|lx|[, <1}.

Hit B prior to A for AR(1)
with Mean Zero
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Example: Computing the Optimal Path

@ Calculus of Variations Problem:

1T 2
min > [ 11z () + 2 ()]} e

zeC
where
c = {z:z(o):(1,1),Hz(T)—(e+2*1/2)(1,1)H2§1,
T <oo,|z(t)],>1, t<T}
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Example: Computing the Optimal Path

@ Calculus of Variations Problem:

1T 2
min > [ 11z () + 2 ()]} e

zeC

where
c = {z:z(o):(1,1),Hz(T)—(e+2*1/2)(1,1)H2§1,
T<oo[z(t),>1, t<T}

@ Solution:

z(t) = (exp(t),exp(t))

z(t) = z(t).
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Interpreting the Change-of-Measure

e Importance Sampling Q: W; is i.i.d. N(0,1) under Q
Yia—Ye = 2(t)A+AW,ep = Fluid dy; ~ 2 (t) dt
Yo = (1,1),
Xeta = Wen+(2(t) +Y2).
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Interpreting the Change-of-Measure

e Importance Sampling Q: W; is i.i.d. N(0,1) under Q

Yioa—Ye = 2(t)A+AWia — Fluid dy, ~ 2 (t) dt
Yo = (11),
Xera = Wea+ (2(1)+Yr).

o Likelihood ratio dP/dQ:

TB/A—]. ) TB/A—I HZ(JA)+YAH2
oo (_ Y, (UM +Y) Xjsa+ L >
j=0 j=0
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Interpreting the Change-of-Measure

e Importance Sampling Q: W; is i.i.d. N(0,1) under Q

Yioa—Ye = 2(t)A+AWia — Fluid dy, ~ 2 (t) dt
Yo = (11),
Xera = Wea+ (2(1)+Yr).

o Likelihood ratio dP/dQ:

TB/A—]. ) TB/A—I HZ(JA)+YAH2
oo (_ Y, (UM +Y) Xjsa+ L >
j=0 j=0

o Importance sampling estimator:

IS Estimator=Lo X I (Tg < Ta)
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Another Interpretation

o Importance Sampling Q: W, is Brownian motion under @

Yiea—Ye = YiA+ AW, n = Fluid dy (t) ~ y () dt,
Yo = A(1,1)7,
Xeva = Wia+2Y:
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Another Interpretation

o Importance Sampling Q: W, is Brownian motion under @

Yiea—Ye = YiA+ AW, n = Fluid dy (t) ~ y () dt,
Yo = A(1,1)7,
Xeva = Wia+2Y:

o Likelihood ratio dP/dQ:

Tg/A-1 Tg/A-1 2
L =exp (— Z(:) 2Y(a) - Xj+1)a + Z(:) 2 H Yijn) H2>
J= J=
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Another Interpretation

o Importance Sampling Q: W, is Brownian motion under @

Yiea—Ye = YiA+ AW, n = Fluid dy (t) ~ y () dt,
Yo = A(1,1)7,
Xeva = Wia+2Y:

o Likelihood ratio dP/dQ:

Tg/A-1 Tp/A—1 9
L=ep|— ) 2Y5 Xgat ) 2HY(J'A)H2
j=0 j=0
o Importance sampling estimator:

IS Estimator=L x [ (Tg < Tp)
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Asymptotic Optimality

o First note: Yiip — Y= —AY: + AXip =

2 2
| Ynal], = 1val2
A

2
= =2|[Yall; +2Y(a) - X(+1)a

2
8 gn =Yl
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Asymptotic Optimality

o First note: Yiip — Y= —AY: + AXip =

2 2
| Ynal], = 1val2
A

2
= -2 H YjAH2 + 2Y(jA) 'X(j+1)A
2
+8 [Xysa = Y-
o Get likelihood ratio representation:

Tg/A-1 TB/A 1
L = exp|— 2 2Y(ia) - Xj11a + 2HYJA H
=

TB/A 1

2
~ e (—HYTBH§/A+||)’0H§/A+A [+ v
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Asymptotic Optimality

@ Bound Likelihood ratio:

< exp (- it IyIB /8 -+ [l /8-+0p 1))
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Asymptotic Optimality

@ Bound Likelihood ratio:
< exp (- it IyIB /8 -+ [l /8-+0p 1))
@ Second moment of estimator:

) A
E°(L2 x 1 (Ta < Ta)) = exp (2 (Jng 113 - o3 /8-+ 0 (/).
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Asymptotic Optimality

@ Bound Likelihood ratio:
< exp (- it IyIB /8 -+ [l /8-+0p 1))
@ Second moment of estimator:
Q2 . 2 2 A
E¥[L"x 1 (Tg < Ta)] =exp | —2 y'gg\l)/l\z — lIvoll2 /A+0(1/A)/

o Asymptotic Optimality follows since:

P (Te < Ta) = o (— (i Iy13~ Iel3) /8 +0(1/)).
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Introduction

A Simple Random Walk Example
Systematic Approach

Efficiency Argument

Counter-examples, Heavy-tails and Beyond
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Counter-examples

e Model: Y; = (—1,—1)t+ X;; X; is Brownian motion &
By ={(x,y) : x > apb or y > a1b}
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Counter-examples

e Model: Y; = (—1,—1)t+ X;; X; is Brownian motion &
By ={(x,y) : x > apb or y > a1b}
e Estimate: u(b) =P (Tp, <) as b /o

First Passage Time Problem
in two dimensions

bag
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Counter-examples

o Known result: As b / o

u(b) =exp(—2bmin{ag, a1}) (1 +o(1)).
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Counter-examples

o Known result: As b / o
u(b) =exp(—2bmin{ag, a1}) (1 +o(1)).
o Optimal Path:

[ tx(1,-1) if a < a
y<t)_{t><(—1,1) if a1 < ag
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Counter-examples

o Known result: As b / o
u(b) =exp(—2bmin{ag, a1}) (1 +o(1)).
o Optimal Path:

[ tx(1,-1) if a < a
y<t)_{t><(—1,1) if a1 < ag

@ Let us assume ag < aj...
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Counter-examples

o Change-of-measure Qy: Brownian Motion with drift (1, —1).

Second Moment of Estimator:
2nd Moment = E@[exp (— (4,0) - XTBb> I(Tg, < oo)]

= Elexp (— (2,0) XTBb) I(Tg, < o0)].
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Counter-examples

e What happens if a path exits A, = {(x,y) :y > a1b}?

Hitting the Unlikely Side...

2
ba, —
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Counter-examples

o Lower bound:
ond Mnt > Elexp (—2xg>) I(Tg, < o, Ta, = Tg,)]
b

= E [exp (—2X(Ti\)b a 2alb) I(Ta, = Tg,)],

where @1 is change-of-measure yielding Brownian Motion with drift
(—-1,1).
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Counter-examples

o Lower bound:

2nd Mnt > E[exp (—ZX%)[)) I (Tg, <00, Ta, = Tg,)]
— E& [exp (—2X-§-1A)b — 281b) I(TAb = TBb)]'

where @1 is change-of-measure yielding Brownian Motion with drift

(—1,1).

@ Note that X(Tt‘) ~ —agaib and T4, = Tpg, under
b
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Counter-examples

o Lower bound:

ond Mnt > Elexp (—zxgj) I(Tg, < o, Ta, = Tg,)]

b

= E [exp (—2X(Ti\)b a 2alb) I(Ta, = Tg,)],

where @1 is change-of-measure yielding Brownian Motion with drift
(—-1,1).
@ Note that X(Tl) ~ —agaib and T4, = Tpg, under
Ap
@ Consequently: 2nd Moment at least roughly
exp (—2alb (1 — ao))

Can easily pick ag < a; to break asymptotic optimality and even
get HUGE variance!!
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Heavy-tails...

o Model: Random walk...
S, =X1+ ...+ X,,

X;i's i.i.d. heavy tailed
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Heavy-tails...

o Model: Random walk...
S, =X1+ ...+ X,,

X;i's i.i.d. heavy tailed
o Typical example: Regular variation

P(Xi>t)=L(t)t*

fora > 0and L(tB) /L(t) — last — oofor B >0 (eg.
L(t) =log(1+1t)).
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Heavy-tails...

o Model: Random walk...
S, =X1+ ...+ X,,

X;i's i.i.d. heavy tailed

o Typical example: Regular variation
P(Xi>t)=L(t)t*

fora > 0and L(tB) /L(t) — last — oofor B >0 (eg.
L(t) =log(1l+t)).
e Note Eexp (6X;) = oo for 6 > 0.
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Heavy-tails...

e Consider estimating: P (T, < o), T, =inf{n>0:5, > b}
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Heavy-tails...

Consider estimating: P (T, < o), T, =inf{n>0:S5, > b}
Xi's i.i.d. reg. varying & EX; <0
Turns out that

P (X <y|Th <o) — P(X;j <y)

No clear way to mimic zero variance change-of-measure!

@ No clear way to apply the systematic approach!
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Solution? State-dependent Importance Sampling

As we shall see these examples can be addressed using
State — dependent importance sampling

which we will study in the second part of this lecture...
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Summary and Conclusions

@ Importance sampling is a useful techinque for rare-event estimation
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Summary and Conclusions

@ Importance sampling is a useful techinque for rare-event estimation

@ Zero-variance importance sampler = conditional distribution given
rare event

o Light-tailed problems: Fundamental family given by exponential
tiltings

@ Large deviations helps approximate the conditional distribution given
rare event

e Optimal path in large deviations dictates tilting (several ways of
interepreting)

@ Approach fails (badly!) in non-convex problems and in heavy-tailed
situations
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