
Mixed-Integer Programming:

State-of-the-art and Fashionable Topics

Andrea Lodi∗

We consider a general Mixed Integer Linear Program (MIP) in the form

min{cT x : Ax > b, x > 0, xj ∈ Z ∀j ∈ I} (1)

where we do not assume that the matrix A has any special structure. Thus, the algorithmic
approach relies on the iterative solution, through general-purpose techniques, of the Linear Pro-
gramming (LP) relaxation

min{cT x : Ax > b, x > 0}, (2)

i.e., the same as problem (1) above but the integrality requirement on the x variables in the set I
has been dropped. We denote an optimal solution of problem (2) as x∗. The reason for dropping
such constraints is that MIP is NP-hard while LP is polynomially solvable and general-purpose
techniques for its solution are efficient in practice.

In these lectures we do not cover LP state-of-the-art, while we cover the basic characteristics
and components of current, commercial and non-commercial, MIP solvers. However, Bixby et al.
[2] report that in 2004 an LP was solved, by CPLEX 8, a million times faster than it was by
CPLEX 1 in 1990, three orders of magnitudes due to hardware and to software improvements,
respectively. This gives a clear indication of how much LP technology has been and is important
for MIP development.

Roughly speaking, using the LP computation as a tool, MIP solvers integrate the branch-and-
bound and the cutting plane algorithms through variations of the general branch-and-cut scheme
proposed by Padberg & Rinaldi [15, 16] in the context of the Traveling Salesman Problem (TSP).

The branch-and-bound algorithm, Land & Doig [11]. In its basic version the branch-
and-bound algorithm iteratively partitions the solution space into sub-MIPs (the children nodes)
which have the same theoretical complexity of the originating MIP (the father node, or the root
node if it is the initial MIP). Usually, for MIP solvers the branching creates two children by using
the rounding of the solution of the LP relaxation value of a fractional variable, say xj , constrained
to be integral

xj 6 bx∗jc OR xj > bx∗jc + 1. (3)

The two children above are often referred to as left (or “down”) branch and right (or “up”) branch,
respectively. On each of the sub-MIPs the integrality requirement on the variables xj ,∀j ∈ I is
relaxed and the LP relaxation is solved. Despite the theoretical complexity, the sub-MIPs become
smaller and smaller due to the partition mechanism (basically some of the decisions are taken)
and eventually the LP relaxation is directly integral for all the variables in I. In addition, the LP
relaxation is solved at every node to decide if the node itself is worthwhile to be further partitioned:
if the LP relaxation value is already not smaller than the best feasible solution encountered so far,
called incumbent, the node can safely be fathomed because none of its children will yield a better
solution than the incumbent. Finally, a node is also fathomed if its LP relaxation is infeasible.

∗DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, andrea.lodi@unibo.it

1



The cutting plane algorithm, Gomory [9]. Any MIP can be solved without branching by
simply finding its “right” linear programming description, more precisely, the convex hull of its
(mixed-)integer solutions. In order to do that, one has to iteratively solve the so called separation
problem

Given a feasible solution x∗ of the LP relaxation (2) which is not feasible for the MIP
(1), find a linear inequality αT x > α0 which is valid for (1), i.e., satisfied by all feasible
solutions x̄ of the system (1), while it is violated by x∗, i.e., αT x∗ < α0.

Any inequality solving the separation problem is called a cutting plane (or a cut, for short) and
has the effect of tightening the LP relaxation to better approximate the convex hull.

Gomory [9] has given an algorithm that converges in a finite number of iterations for pure
Integer Linear Programming (IP)1 with integer data. Such an algorithm solves the separation
problem above in an efficient and elegant manner in the special case in which x∗ is an optimal
basis of the LP relaxation. No algorithm of this kind is known for MIPs, that being one of the
most intriguing open questions in the area (see, e.g., Cook, Kannan & Schrijver [3]).

The idea behind integrating the two algorithms above is that LP relaxations (2) do not natu-
rally well approximate, in general, the convex hull of (mixed-)integer solutions of MIPs (1). Thus,
some extra work to devise a better approximation by tightening any relaxation with additional
linear inequalities (cutting planes) increases the chances that fewer nodes in the search tree are
needed. On the other hand, pure cutting plane algorithms show, in general, a slow convergence
and the addition of too many cuts can lead to very large LPs which in turn present numerical
difficulties for the solvers. The branch-and-cut algorithm has been proven to be very effective
initially for combinatorial optimization problems (like TSP) with special-purpose cuts based on a
polyhedral analysis and later on in the general MIP context.

Lecture 1. In the first lecture, we discuss the evolution of MIP solvers having in mind both a
performance perspective and a modeling/application viewpoint. We initially present some impor-
tant MIP milestones with no aim of being exhaustive with respect to algorithms and software. We
then go into the details of the basic components of MIP codes. Then, we describe some important
tools that allow a relevant degree of flexibility in the development of MIP-based applications.
Finally, we discuss the challenges for the next generation MIP solvers by first presenting a list of
difficult MIP classes on which better performance/strategies would be extremely beneficial. This
lecture is largely based on the paper [12].

Lecture 2. In the second lecture, we discuss both branching and cutting at an advanced level.
Specifically, we review the attempts to branch on disjunctions more complicated than (3) (see,
[10, 14, 13]) and we consider the recent and very intriguing idea of generating cuts by using more
than one row of the simplex tableau (see, [1, 8, 4, 5, 6, 7].

References

[1] K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey. Inequalities from two rows
of a simplex tableau. In M. Fischetti and D.P. Williamson, editors, Integer Programming
and Combinatorial Optimization - IPCO 2007, volume 4513 of Lecture Notes in Computer
Science, pages 1–15, Berlin Heidelberg, 2007. Springer-Verlag.

[2] R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mixed-integer programming:
A progress report. In M. Grötschel, editor, The Sparpest Cut: The Impact of Manfred Padberg
and his Work, pages 309–325. MPS-SIAM Series on Optimization, 2004.

1IPs are the special case of MIPs where all variables belong to I, i.e., are constrained to be integer.

2



[3] W.J. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer programming
problems. Mathematical Programming, 47:155–174, 1990.

[4] G. Cornuéjols and F. Margot. On the facets of mixed integer programs with two integer
variables and two constraints. Mathematical Programming, 120:429–456, 2009.

[5] S. Dey and L.A. Wolsey. Lifting integer variables in minimal inequalities corresponding to
lattice-free triangles. In A. Lodi, A. Panconesi, and G. Rinaldi, editors, Integer Programming
and Combinatorial Optimization - IPCO 2008, volume 5035 of Lecture Notes in Computer
Science, pages 463–475. Springer-Verlag, Berlin Heidelberg, 2008.

[6] S. S. Dey and A. Tramontani. Recent developments in multi-row cuts. Optima, 80:2–8, 2009.

[7] S.S. Dey, A. Lodi, A. Tramontani, and L.A. Wolsey. Experiments with two row tableau cuts.
Technical Report OR/09/11, DEIS, Università di Bologna, 2009.

[8] D.G. Espinoza. Computing with multi-row gomory cuts. In A. Lodi, A. Panconesi, and
G. Rinaldi, editors, Integer Programming and Combinatorial Optimization - IPCO 2008,
volume 5035 of Lecture Notes in Computer Science, pages 214–224. Springer-Verlag, Berlin
Heidelberg, 2008.

[9] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64:275–278, 1958.

[10] M. Karamanov and G. Cornuéjols. Branching on general disjunctions. Technical report,
Tepper School of Business, CMU, 2005, revised 2008.

[11] A.H. Land and A.G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28:497–520, 1960.

[12] A. Lodi. Mip computation. In M. Jünger, T.M. Liebling, D. Naddef, G.L. Nemhauser,
W.R. Pulleyblank, G. Reinelt, G. Rinaldi, and L.A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008, pages 619–645. Springer-Verlag, 2009.

[13] A. Lodi, T.K. Ralphs, F. Rossi, and S. Smriglio. Interdiction branching. Technical Report
OR/09/10, DEIS, Università di Bologna, 2009.

[14] A. Mahajan and T.K. Ralphs. Experiments with branching using general disjunctions. In
The Proceedings of the Eleventh INFORMS Computing Society Meeting, pages 101–118, 2009.

[15] M.W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman
problem by branch and cut. Operations Research Letters, 6:1–7, 1987.

[16] M.W. Padberg and G. Rinaldi. A branch and cut algorithm for the resolution of large-scale
symmetric traveling salesmen problems. SIAM Review, 33:60–100, 1991.

3


