

Rijkswaterstaat Ministerie van Verkeer en Waterstaat

# Integrated Anticipatory Control of Road Networks

dr.ir. Henk Taale Centre for Transport and Navigation

January 15th, 2009



## Congestion in The Netherlands





## Congestion in 1955



Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009



# Traffic and Transport Policy



Building: "very effective, expensive, long"



**Pricing:** "politically difficult"



**Traffic Management:** *"effective, less expensive and quick"* 

Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009



#### Traffic Management Long Ago



Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009





Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009



## Investment and Effects of ITS







## Enough?









## **Next Steps**

- More investments and better ITS not the fundamental solution •
- From technique to result oriented approach





#### **Traffic Signal Control**

- First traffic light: London, 1868
- Electronic traffic control equipment: USA, 1914
- Large scale implementation in cities: USA, twenties and thirties of 20th century
- First traffic lights in The Netherlands: thirties



Collectie SA. Foto: A. van Beurden, 1930



Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009



# **Traffic Control Strategies**

- Fixed-time
- Fixed-time but changing during the day (peak periods)
- Variable green times
- In The Netherlands more local control
  - Bicycles
  - Public transport priority
- Control strategies reactive
  - Presence of vehicles
  - Upstream traffic
- Network control strategies: rest of the world





# Traffic Management Measures

- Traffic signal control
- Ramp metering
- Dynamic speed limits
- Tolling
- Information







## Anticipatory Control

- Interaction between road authorities and road users
- Road authorities and road users do not have the same goals
- Manage traffic such that choices of road users are taken into account (in this case: route choice)
- Manage traffic such that different goals of different road authorities are taken into account
- Network approach needed



#### Integrated Control

- Different road authorities
  - Can have different goals
  - Is cooperation beneficial?
- Coordination of traffic management measures
  - Currently local measures
  - Is coordination of measures better?
- Game theory
  - Interaction between players with their own decisions
  - Gain depends on own decisions, but also on decisions of the other players
- Strategies
  - React on decision of other players (Nash game)
  - Anticipate on decisions of other players (Stackelberg game)



#### Framework





# Dynamic network loading

- Network of links and nodes with attributes
- Other input:
  - General parameters
  - Origins and destinations + OD table
  - Routes
- Traffic flows dependent on capacity of links and nodes (blocking back)
- Akçelik and HCM 2000 functions for travel time
- Separate travel time functions for controlled intersections, roundabouts and priority junctions



#### Dynamic traffic assignment

- Assign traffic in a network for every OD pair to the available routes for every time period
- Deterministic
  - For every OD pair and time period the travel costs (time) on every used route is equal and smaller than on the unused routes
- Stochastic
  - For every OD pair and time period the travel costs (time) on every used route is more or less equal and smaller than on the unused routes
  - C-logit assignment algorithm
  - Overlap in routes



#### Routes

- Route-based assignment
- Route are either:
  - User specified
  - Generated based on Dijkstra's algorithm:
- Dijkstra
  - Randomise free flow travel times, including control delay
  - Search shortest route
  - If shorter add to k-shortest route list
- Exclude unwanted or similar routes
- Determine route equality value
- Do not allow certain turning movements







## **Optimisation Method**

- Optimisation problem involves at least 2 DNL runs and 1 DTA
- Global and costly optimisation
- Deterministic methods
  - DIRECT
  - MCS (Multilevel Coordinate Search)
- Heuristic methods
  - Simulated annealing
  - Differential evolution
  - Advanced genetic algorithm (GAOT)
  - CMA-ES (Covariance Matrix Adaptation Evolution Strategy)



## **Optimisation Method Comparison**

- 2 small cases: 10 variables and 20 variables to optimise
- 10 runs per optimisation method
- Graphs shows average







Rijkswaterstaat Centre for Transport and Navigation January 15th, 2009





2009-01/24

Centre for Transport and Navigation January 15th, 2009



## Conclusions

- Anticipatory control gives less congestion
- Integrated anticipatory control can be profitable for all players
- Concept only shown for small networks
- Application for larger networks needs an improvement of the optimisation method





## Colophon

dr.ir. Henk Taale Rijkswaterstaat Centre for Transport and Navigation E-mail: <u>henk.taale@rws.nl</u>

Pictures: Rijkswaterstaat

