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Motivation

Signals sent by different sources in multipoint radio networks need
to be coordinated because they interfere.

The Media Access Control (MAC) layer ...

... provides single-hop full-duplex communication channels in mul-
tipoint networks to higher layers of the protocol stack.

We study the scheduling problems arising on the MAC layer from
an algorithmic point of view.
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Informal problem statement

The interference scheduling problem

Given n pairs of points (u1, v1), . . . , (un, vn) from a metric space,
assign

power levels p1, . . . , pn > 0 and

colors c1, . . . , cn from {1, . . . , k}
such the pairs in each color class “can communicate simultaneously”
at the given power levels.

Objective: Minimize the number of colors k .
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Fanghänel, Keßelheim, Räcke, Vöcking Oblivious Interference Scheduling



Introduction
Directed Variant of the Problem

Bidirectional Variant of the Problem
Conclusions & Open Problems

Illustration
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Modelling aspects

Graph-based vicinity models

Two nodes in the radio network are connected by an edge in
a communication graph if and only if they are in mutual
transmission range.

Interference is modelled through independence constraints:
If a node u transmits a signal to an adjacent node v , then no
other node in the k-hop neighborhood of u, for k ≥ 1, can
receive another signal.

The problem with this modelling approach is that it ignores that
neither radio signals nor interference end abruptly at a boundary.
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Modelling aspects

Let α ≥ 1 (path loss exponent) and β > 0 (gain) be fixed.

The physical model

Let δ(u, v) denote the distance between the nodes u and v .

The loss between u and v is defined as `(u, v) = δ(u, v)α.

A signal sent with power p by node u is received by node v at
a strength of p/`(u, v).

SINR constraint: Node u can successfully decode this signal if
its strength is larger than β times the sum of the strength of
other simultaneously sent signals plus ambient noise ν.

SINR = signal to interference plus noise ratio
If not stated differently, we assume α = 2, β = 1, ν = 0.
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Formal problem statement

The interference scheduling problem (directed variant)

Given n pairs of points (u1, v1), . . . , (un, vn) from a metric space,
assign power levels p1, . . . , pn > 0 colors c1, . . . , cn from {1, . . . , k}
such that, for every i ∈ [n] := {1, . . . , n}, it must hold the directed
SINR constraint

pi

`(ui , vi )
> β

 ∑
j∈[n]\{i}

cj =ci

pj

`(uj , vi )

 .

Objective: Minimize the number of colors k .

[Moscibroda and Wattenhofer, INFOCOM 2006]
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Example: overlapping pairs on a line

Overlapping Pairs cannot be scheduled simultaneously ...

Fanghänel, Keßelheim, Räcke, Vöcking Oblivious Interference Scheduling



Introduction
Directed Variant of the Problem

Bidirectional Variant of the Problem
Conclusions & Open Problems

Example: nested pairs on a line

Consider six equally spaced points on the line:
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Example: nested pairs on a line

Consider six equally spaced points on the line:

u u v1 2 2 v1
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Example: nested pairs on a line

Consider six equally spaced points on the line:

u u v1 2 2 v1

1

25
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Example: nested pairs on a line

Consider six equally spaced points on the line:

u u v1 2 2 v1

1

25

9
9
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Example: nested pairs on a line

Uniform power assignment:

u u v1 2 2 v1

1

25

9
9

1/25

1/9
1/9

1
1 1
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Example: nested pairs on a line

Linear power assignment:

u u v1 2 2 v1

1

25

9
9

1/9

1

25/9

1
125
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Example: nested pairs on a line

Square root power assignment:

u u v1 2 2 v1

1

25

9
9

1/9

1

1/5

5/9

15
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Oblivious Power Assignments

Definition:

A power assignment is called oblivious if there is a function
f : R>0 → R>0 such that, for every i ∈ [n], pi = f (`(ui , vi )).

Examples: uniform, linear, square root

Advantage: Easy to implement (in a distributed fashion)

Question: Is there a universally good oblivious power assignment,
i.e., a power assignment for which there exists a coloring using an
almost optimal number of colors for every set of request pairs?
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Related work

Moscibroda and Wattenhofer, 2006, give an efficient
algorithm for achieving strong connectivity among n points in
Euclidean space with O(log4 n) colors using a non-oblivious
power assignment.

Chafekar et al., 2007, show that for the linear power
assignment there exists a coloring with only

O(opt′ · polylog(n,∆, Γ))

colors for any n request pairs in Euclidean space, where ∆
denotes the aspect ratio, Γ the available power range, and
opt′ the optimal number of colors under a slightly more
restrictive power range.
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New result for directed SINR constraints

Question: Is there an oblivious power assignment with
approximation factor polylog(n)?

Answer: – NO!

Theorem:

Let f : R>0 → R>0 be any oblivious power assignment function.
There exists a family of instances on a line requiring Ω(n) colors
under f but only O(1) colors under a different power assignment.
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Sketch of proof

We distinguish three cases depending on the asymptotic behaviour
of f .

1 f is asymptotically unbounded, that is, for every c > 0 and
every x0 > 0 there exists a value x > x0 with f (x) > c

2 f is asymptotically bounded from above by some value c > 0
but does not converge to 0

3 f converges against 0

In this talk, we focus on the first case only.
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Sketch of proof

We construct the following family of instances

u1 v1 u2 v2 un vn
x1 χ · y2 x2 xn

1

χ is a sufficiently large constant (depending on β).

xi and yi depend on f and are defined as follows:

yi = 2(xi−1 + yi−1).

Given x1, . . . , xi−1 and yi , we choose xi such that xi ≥ yi and

f (xi ) ≥ yαi ·
f (xj)

xαj
for all j < i .

This choice is always possible since f is asymptotically unbounded.
Fanghänel, Keßelheim, Räcke, Vöcking Oblivious Interference Scheduling
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Sketch of proof

Let S be a set of pairs that can be scheduled simultaneously. Let
k = min(S). As distances increase geometrically, δ(ui , vk) ≤ 4χyi ,
for i ∈ S\{k}.

The SINR constraint at receiver vk yields

β
∑

i∈S\{k}

pi

`(ui , vk)
≤ pk

`(uk , vk)
=

f (xk)

xαk
.

Combining these equations gives

1

β

f (xk)

xαk
≥

∑
i∈S\{k}

pi

`(ui , vk)
≥

∑
i∈S\{k}

yαi
f (xk )
xα
k

(4χyi )α
=
|S | − 1

(4χ)α
· f (xk)

xαk
.

Thus |S | ≤ (4χ)α

β + 1 = O(1).
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Sketch of proof

Now consider the non-oblivious power assignment pi =
√

2i .

Observe that distance increase geometrically as yi ≤ xi and
yi+1 ≥ 2xi .

For this reason, the sum of interferences for the lower as well
as for the higher indices form geometric series.

Thus a constant fraction of all pairs may share the same color.

Hence we have shown that f requires Ω(n) colors while there is a
coloring for which O(1) colors suffice.
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However ...

Network standards demand that the MAC layer provides single-hop
full-duplex communication channels.

Therefore one should study bidirectional rather than directed
communication channels.
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Formal problem statement

The interference scheduling problem (bidirectional variant)

Given n pairs of points (u1, v1), . . . , (un, vn) from a metric space,
assign power levels p1, . . . , pn > 0 colors c1, . . . , cn from {1, . . . , k}
such that, for every i ∈ [n] := {1, . . . , n} and w ∈ {ui , vi}, it must
hold the bidirectional SINR constraint

pi

`(ui , vi )
> β

 ∑
j∈[n]\{i}

cj =ci

max

{
pj

`(uj ,w)
,

pj

`(vj ,w)

} .

Objective: Minimize the number of colors k .
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Oblivious power assignment for bidirectional SINR
constraints

The square root power assignment p̄ sets the power level for a pair
(u, v) equal to

√
`(u, v).

Theorem

For any set of n bidirectional communication requests, p̄ admits a
coloring with at most polylog(n) times the minimal number of
colors.

We prove this result by showing that there is a subset S ⊆ [n] with
|S | ≥ n/ polylog(n) that is β-feasible for p̄, i.e., satisfies the SINR
constraint with gain β using only one color.
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Analysis: high-level description

For our analysis, we solve the following relaxation.

Node-loss scheduling

One is given a set of nodes ui ∈ V each coming with a loss parameter
`i . One needs to specify a β-feasible subset U ⊆ V with power
levels, i.e., for all i ∈ U, it holds

pi

`i
> β

 ∑
j∈U\{i}

pj

`(i , j)

 .

The square root power assignment p̄ sets the power level for a
node-loss pair (u, `) equal to

√
`.
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Analysis: high-level description

Lemma (to be shown)

Given any set |V | of node-loss pairs that is β-feasible for any power
assignment, there exists a β′-feasible subset U ⊆ V for p̄ with
|U| ≥ 4

5 |V | and β′ = β2/3/ polylog(n).

Going back from node-loss pairs to pairs of nodes (requests), it
follows that there is a β′-feasible subset S ⊆ [n] of requests with
|S | ≥ 3

5 n.

Using a randomized coloring procedure, one can sparsify S by a
polylogarithmic factor and obtain a subset S ′ of size n/ polylog(n)
that is β-feasible.
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Analysis: From general to tree metrices

Proposition (Fakcharoenphol, Rao, Talwar, 2003)

Given a finite metric space (V , δ) there exist r = O(log |V |) edge
weighted treees T1, . . . ,Tr with nodes set V such that

∀(u, v) ∈ V 2, ∀i ∈ {1, . . . , r}: δ(u, v) ≥ δTi
(u, v).

∀(u, v) ∈ V 2, ∃i ∈ {1, . . . , r}: δ(u, v) ≤ δTi
(u, v) · O(log V ).

Applying this result, it remains only to show

Claim

Given any set |V | of node-loss pairs from a tree metric that is β-
feasible for any power assignment, there exists a β′-feasible subset
U ⊆ V for p̄ with |U| ≥ 1− 1

5r |V | and β′ = β2/3/ polylog(n).
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Analysis for star metrices

We show

Lemma

Given any set |V | of node-loss pairs from a star metric that is β-
feasible for any power assignment, there exists a β′-feasible subset
U ⊆ V for p̄ with |U| ≥ 1− 1

5r |V | and β′ = β2/3/ polylog(n).
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Decomposing trees into stars
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Decomposing trees into stars

2
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Decomposing trees into stars

2

3
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Decomposing trees into stars

2

3
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Decomposing trees into stars

Recursion
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Algorithmic Aspects

The presented analysis assumes that an optimal power
assignment and coloring is known.

Therefore, the given existence proof is not constructive.

Theorem

There is an efficient coloring algorithm for the square root power
assignment that approximates the optimal number of colors up to
a factor of O(log n).
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Conclusions & open problems

The square root power assignment has advantages against other
assignments in some selected worst-case instances. What is the
performance in random, perturbed or real world instances?

The schedule (coloring) for the square root assignment can be
computed by a polynomial time algorithm. Is there a distributed
scheduling policy that is suitable for application in practice?

Our analysis assumes that both communication partners of a pair
use the same power. Can asymmetric assignments achieve a
(significantly) better performance than symmetric ones?
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