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Talk Outline

• Quartic optimization: motivation

• What is SDP/SOS relaxation?

• Approximation bounds
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Quartic Optimization

Maximization form

maximize f(x) =
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to xTAix ≤ 1, i = 1, ...,m,

(1)

or the minimization form

minimize f(x) =
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to xTAix ≥ 1, i = 1, ...,m,

(2)

where Ai ∈ Rn×(n+1)/2 : positive semidefinite, i = 1, ...,m.

• fmax and fmin denote the optimal values of (1) and (2) respectively.

• To ensure fmin and fmax exist, we assume throughout that
∑m

i Ai � 0.
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Quartic Optimization: Motivation

Quartic optimization problems arise in various engineering applications

• Sensor localization: let A and S denote the anchor nodes and sensor nodes respectively

minimize
∑
i,j∈S

(
‖xi − xj‖2 − d2

ij

)2

+
∑

i∈S,j∈A

(
‖xi − sj‖2 − d2

ij

)2

⇒ Quartic minimization (Known: NP-hard; constant factor approximation is also hard)

• Digital communication: blind channel equalization of constant modulus signals

x(t) = Hs(t) + n(t)

where H is unknown, the components of s(t) are constant (|si(t)| = 1, ∀i) A channel

equalizer g can be found by

minimize
∑
t

(|gTx(t)|2 − 1)
2
, ⇒ Quartic minimization
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• Signal processing: independent component analysis (ICA)

x = Hs, H full column rank, unknown

? s is independent, high 4-th Kurtosis, non-Gaussian sources;

x: measurement, unknown linear mixture of s

? Goal: Find G such that Gx is a permutation of s

? Gx is separate, independent⇔ the 4-th order Kurtosis of Gx is high

⇒ maximize the 4-th order Kurtosis of Gx (fourth order polynomial of G) subject to ball

constraint (power constraint)

⇒ ball-constrained homogeneous quartic maximization
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Quartic Optimization: Complexity

• The quartic polynomial optimization problems (1)–(2) are nonconvex, NP-hard

⇒ consider polynomial time relaxation procedures that can deliver provably high quality

approximate solutions (for special subclasses of quartic optimization problems).

Approximation Ratio

• x̂ is a c-factor approximation of quartic minimization problem (2) if

fmin ≤ f(x̂) ≤ cfmin

with c independent of problem data. (Therefore, fmin = 0⇔ f(x̂) = 0.)

• Weaker notion: (1− ε)-approximation of quartic minimization problem (2) if

f(x̂)− fmin ≤ (1− ε)(fmax − fmin)

with ε independent of problem data.

• Similarly for quartic maximization problem.
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SDP/SOS Relaxation

• the sum-of-squares (SOS) technique

? represent each nonnegative polynomial as a sum of squares of some other polynomials a

given degree

? Alternatively, use matrix lifting

X :=


1

xi
xixj
xixjxk

...


(

1 xi xixj xixjxk · · ·
)

? Under the lifting, each polynomial inequality is relaxed to a convex, linear matrix inequality

• approximate (arbitrarily well) by a hierarchy of SDPs with increasing size

• difficulty: the size of the resulting SDPs in the hierarchy grows exponentially fast
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SDP/SOS Relaxation

• The most effective use of SDP relaxation so far has been for the quadratic optimization

problems whereby only the first level relaxation in the SOS hierarchy is used.

? difficulty: cannot provide arbitrarily tight approximation in general

? does lead to provably high quality approximate solution for certain type of quadratic

optimization problems (e.g., Max-Cut)

• Question: find a provably good first level SOS approximation of some quartic optimization

problems (1)–(2)?
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SDP Relaxation of Nonconvex Quadratic Optimization
Problem

• focus here on a specific class of problems: general QCQPs

• vast range of applications...

the generic QCQP can be written:

minimize xTA0x + r0

subject to xTAix + ri ≤ 0, i = 1, . . . ,m

• if all Ai are p.s.d., convex problem,

• here, we suppose at least one Ai not p.s.d.

8



SDP Relaxation for Quartic Optimization Zhi-Quan Luo & Shuzhong Zhang

Convex Relaxation

Using a fundamental observation:

X := xxT ⇔ Xij = xixj ⇔ X � 0, rank(X) = 1,

and noting xTAix = Tr (XAi), the original QCQP:

minimize f(x) = xTA0x + r0

subject to xTAix + ri ≤ 0, i = 1, . . . ,m

can be rewritten:

minimize g(X) = Tr (XA0) + r0

subject to Tr (XAi) + ri ≤ 0, i = 1, . . . ,m
X � 0, rank(X) = 1

the only nonconvex constraint is now rank(X) = 1...
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Convex Relaxation: Semidefinite Relaxation

• we can directly relax this last constraint, i.e. drop the nonconvex rank(X) = 1 to keep only

X � 0

• the resulting program gives a lower bound on the optimal value

minimize g(X) = Tr(XA0) + r0

subject to Tr (XAi) + ri ≤ 0, i = 1, . . . ,m

X � 0

⇒ SDP

How to Generate a Feasible Solution?

Let X∗ be the optimal solution of

• pick x as a Gaussian variable with x ∼ N (0, X∗)

• Since Tr (X∗Ai) + ri = E[xTAix+ ri], x will solve the QCQP “on average” over this

distribution
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Generate a Feasible Solution

In other words, SDP is equivalent to

minimize E[xTA0x+ r0]

subject to E[xTAix+ ri] ≤ 0, i = 1, . . . ,m

a good feasible point can then be obtained by sampling enough x. . .

Two observations:

• SDP finds the convariance matrix used in sampling

• The relaxed function g(X) satisfies

? Consistency: g(X) = f(x) when X = xxT

? Compatibility: g(X) = E(f(x)) when x ∼ N(0, X)

Key question:

• how good is the approximate solution x?

• can we bound f(x)/f∗ by a constant?
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Summary of Existing Results

Assume

• Ai, Āi � 0, i = 0, 1, 2, ...,m

• Bj 6� 0 indefinite, j = 0, 1, 2, ..., d

R, d = 0
R, d = 1 or

C, d = 0, 1
R or C, d ≥ 2

min wHA0w
s.t. wHAiw ≥ 1, wHBjw ≥ 1

Θ(m2) Θ(m) ∞

max wHB0w
s.t. wHAiw ≤ 1, wHBjw ≤ 1

Θ(log−1m) Θ(log−1m) ∞

max min
1≤i≤m

wHAiw
wHĀiw + σ2

s.t. ‖w‖2 ≤ P
Θ(m2) Θ(m) N.A.

Blue: NRT’99, Red: LSTZ’06, CLC’07, HLNZ’07
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SDP Relaxation for Quartic Optimization

Consider the first level SOS hierarchy so that

xixj 7→ Xij, X � 0.

Under this mapping, each quartic term is mapped, non-uniquely, to a quadratic term, e.g.,

x1x2x3x4 7→


X12X34

X13X24

X14X23

• Which one should we use?

• Should we choose a convex combination of the three choices?

• Does it matter?
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It Matters!

Consider the following quartic optimization problem in R4:

minimize f(x) = (x1x2)
2

subject to x2
1 ≥ 1, x2

2 ≥ 1.
(3)

Under the matrix lifting transformation X = xxT, (3) is relaxed to

minimize g(X) = X2
12

subject to X11 ≥ 1, X22 ≥ 1, X � 0.

• It can be checked

? fmin = 1

? gmin = g(I) = 0 since X = I is a feasible solution.

• This shows that the approximation ratio is unbounded!

fmin

gmin

=∞. (4)
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It Matters!

• On the other hand, consider the symmetric mapping

xixjx`xm 7→
1

3
(XijX`m +Xi`Xjm +XimXj`).

Under this mapping, the quartic objective function

f(x) = x
2
1x

2
2

is relaxed to

h(x) =
1

3
(X11X22 + 2X

2
12).

• Let hmin := minimize h(X) subject to X11 ≥ 1, X22 ≥ 1, X � 0.

• Notice that hmin = h(I) = 1
3, implying

fmin

hmin

=
1
1
3

= 3,

which is indeed finite.
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SDP Relaxation for Quartic Optimization

• Suppose g(X) is a quadratic function to be used as a relaxation of the quartic function

f(x). Then g(X) should satisfy

consistency property: g(X) = f(x) =
∑

1≤i,j,k,`≤n

aijk`xixjxkx`, whenever X = xxT.

• There are many quadratic functions g(X) satisfying this property, e.g.

xixjxkx` 7→


XijXk`

XikXj`

Xi`Xjk

• Which one should we pick?

Goal: pick one that ensures good approximation of quartic problem (1).
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SDP Relaxation for Quartic Optimization

• Let X̂ � 0 denote the optimal solution of the following quadratic SDP relaxation of (1):

maximize g(X)

subject to Tr(AiX) ≤ 1, i = 1, 2, ...,m, X � 0.

• To generate a feasible solution for the original problem (1), we draw random samples x from

the Gaussian distribution N(0, X̂).

• To ensure approximate quality, we wish to maximize E[f(x)].

• Key observation: E[f(x)] is a quadratic function of X. This motivates the following

compatibility property: g(X) = c E[f(x)], for some c > 0, where X = E(xxT).

• Question: Is there a positive constant c satisfying both the compatibility and the

consistency conditions?
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SDP Relaxation for Quartic Optimization

• Fact: Suppose x ∈ Rn is a random vector drawn a Gaussian distribution N(0, X) where

X � 0. Then for any 1 ≤ i 6= j 6= k 6= ` ≤ n, we have

E[x4
i ] = 3X2

ii

E[x3
ixj] = 3XiiXjj

E[x2
ix

2
j] = XiiXjj + 2X2

ij

E[x2
ixjxk] = XiiXjk + 2XijXik

E[xixjxkx`] = XijXk` +XikXj` +Xi`Xjk.

• Based on this fact, we propose to relax each quartic term symmetrically as

xixjxkx` 7→
1

3
(XijXk` +XikXj` +Xi`Xjk) , ∀ 1 ≤ i, j, `,m ≤ n.

• It can be easily checked that the consistency property and the compatibility property is

satisfied with c = 1/3!
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• Under the above symmetric mapping, the quartic polynomial maximization problem (1) is

relaxed to

maximize g(X) =
1

3

∑
1≤i,j,k,`≤n

aijk` (XijXk` +XikXj` +Xi`Xjk)

subject to Tr(AiX) ≤ 1, i = 1, ...,m

X � 0,

(5)

and the quartic polynomial minimization problem (2) can be relaxed as

minimize g(X) =
1

3

∑
1≤i,j,k,`≤n

aijk` (XijXk` +XikXj` +Xi`Xjk)

subject to Tr(AiX) ≥ 1, i = 1, ...,m

X � 0.

(6)

• Property:

E(f(x)) = E

 ∑
1≤i,j,k,`≤n

aijk`xixjxkx`

 = 3g(X)

• Are these good approximations?
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Several Issues

• Bad news: the relaxed quadratic SDPs (5)–(6) are NP-hard!

• Good news: Let X̂ be an α-approximate solution of (5). Suppose we randomly generate a

sample x from Gaussian distribution N(0, X̂). Let x̂ = x/max1≤i≤m x
TAix. Then

? x̂ is a feasible solution of (1)

? the probability that

fmax ≥ f(x̂) ≥
3α

4
(
ln 2mn

θ

)2
fmax

is at least θ/2 with θ := 1.443× 10−7, where fmax denotes the optimal value of (1).

• In other words, good approximation of the relaxed quadratic SDPs (5)–(6) leads to good

approximation of (1)–(2).

Note: A feasible X̂ � 0 is said to be an α-approximate solution of (5) if g(X̂)/gmax ≥ α.
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Ideas in the Proof: feasibility

• Observation: the relaxed quadratic SDP (5) can be viewed as picking a covariance matrix

X � 0 for x ∼ N(0, X) according to

maximize E(f(x))

subject to E(xTAix) ≤ 1, i = 1, ...,m

• Suppose X̂ � 0 is an α-approximate solution: g(X̂) ≥ αgmax.

• For random samples x ∼ N(0, X̂), the constraint xTAix ≤ 1 is satisfied in expectation.

• Since Ai � 0, it can be shown that P(xTAix > γ2E(xTAix)) = O(nγ−1e−γ
2/2), for all

γ > 0. So the probability of getting a x such that

P(x
T
Aix ≤ γ2

E(x
T
Aix) ≤ γ2

) = 1−O(mnγ
−1
e
−γ2/2

), ∀ i = 1, 2, ...,m.

• Choosing γ = O(lnnm)⇒ x/O(ln(nm) is feasible with a positive probability.

21



SDP Relaxation for Quartic Optimization Zhi-Quan Luo & Shuzhong Zhang

Ideas in the Proof: objective value

• Observation:
E(f(x)) = 3g(X̂) ≥ 3αgmax ≥ 3αfmax

where

? the first step is due to the definition of g (compatibility property)

? the second step is due to the definition of α

? the last step is due to g(xxT) = f(x) (consistency property)

• Question: Is there a positive (and independent of data) probability of getting a x from

N(0, X̂) such that

f(x) ≥ E(f(x))?

• The answer is YES!
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A Key Step in the Proof

• Fact: Suppose X � 0 and let x ∼ N(0, X). Suppose f(x) be any homogeneous quartic

polynomial in Rn. Then

P {f(x) ≥ E[f(x)]} ≥ 1.443× 10
−7

and

P {f(x) ≤ E[f(x)]} ≥ 1.443× 10
−7
.

• The proof (brute force) relies on the following bound

E
[
(f(x)− E[f(x)])

4
]
≤ 1732500 Var

2
(f(x))

and the following fact (HLNZ’07)

? Let ξ be a random variable with bounded fourth order moment. Suppose

E[(ξ − E(ξ))
4
] ≤ τ Var

2
(ξ), for some τ > 0.

Then P {ξ ≥ E(ξ)} ≥ 0.25τ−1 and P {ξ ≤ E(ξ)} ≥ 0.25τ−1.
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SDP Approximation Ratio for Quartic Minimization

• Consider the following SDP relaxation of (2)

gmin := minimize g(X) =
1

3

∑
1≤i,j,k,`≤n

aijk` (XijXk` +XikXj` +Xi`Xjk)

subject to Tr(AiX) ≥ 1, i = 1, ...,m, X � 0.

(7)

Let X̂ be an β-approximate solution of (7).

• Suppose we randomly generate a sample x from Gaussian distribution N(0, X̂). Let

x̂ = x/min1≤i≤m x
TAix. Then

? x̂ is a feasible solution of (2)

? the probability that

fmin ≤ f(x̂) ≤ 12βmax

{
m2

θ2
,
m(n− 1)

θ(π − 2)

}
fmin

is at least θ/2 with θ := 1.443× 10−7, where fmin denotes the optimal value of (2).
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Where do we stand?

We reduce NP-hard quartic optimization problem to a quadratic SDP problem.
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How to Approximate the Relaxed Quadratic SDP?

• Consider the quartic maximization problem over a ball:

maximize
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to ‖x‖2 ≤ 1.

• The relaxed SDP problem is

maximize
1

3

∑
1≤i,j,k,`≤n

aijk` (XijXk` +XikXj` +Xi`Xjk)

subject to Tr(X) ≤ 1

X � 0.

(8)
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How to Approximate the Relaxed Quadratic SDP?

• We provide a polynomial time algorithm for the relaxed quadratic SDP problem to find an

1/n2 approximate solution

? Idea: approximate (and replace) the SDP simplex constraint by a ball constraint:

{X ∈ Sn×n |
√
n− 1 ‖X‖F ≤ Tr(X)} ⊆ Sn×n+ ⊆ {X ∈ Sn×n | ‖X‖F ≤ Tr(X)}

? Ball constrained (nonconvex) QP is solvable in polynomial time

? If g(I) ≥ 0, then the optimal solution of the ball constrained QP is a 1/n2-approximate

solution of (8).

• Combined with an appropriate probabilistic rounding procedure, we can find a feasible x̂ for the

original quartic optimization problem (1) satisfying

f(x̂)

fmax

≥ Ω

(
1

(n lnn)2

)
for the quartic maximization problem (1), provided A1 � 0 and m = 1.
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Polynomial-Time Approximation of Quartic Minimization

• Consider the quartic maximization problem over a ball:

minimize
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to ‖x‖2 ≥ 1.

• The relaxed SDP problem is

minimize
1

3

∑
1≤i,j,k,`≤n

aijk` (XijXk` +XikXj` +Xi`Xjk)

subject to Tr(X) ≥ 1

X � 0.

(9)
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How to Approximate the Relaxed Quadratic SDP?

• We provide a polynomial time algorithm for the relaxed quadratic SDP problem (9) to find an

1/n2 approximate solution

? Idea: approximate (and replace) the SDP simplex constraint by a ball constraint:

{X ∈ Sn×n |
√
n− 1 ‖X‖F ≤ Tr(X)} ⊆ Sn×n+ ⊆ {X ∈ Sn×n | ‖X‖F ≤ Tr(X)}

? Ball constrained (nonconvex) QP is solvable in polynomial time

? If g(I) ≥ 0, then the optimal solution of the ball constrained QP is a 1/n2-approximate

solution of (8).

• Combined with an appropriate probabilistic rounding procedure, we can find a feasible x̂ for the

original quartic optimization problem (2) satisfying

f(x̂)− fmin

fmax − fmin

≤ 1− Ω

(
1

n2mmax{m,n}

)
for the quartic minimization problem (1), provided A1 � 0 and m = 1.
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Extensions

• Fact: if x ∈ N(0, X), then

E[x1x2x3x4x5x6]

= X12X34X56 +X12X35X46 +X12X36X45 +X13X24X56 +X13X25X46

+X13X26X45 +X14X23X56 +X14X25X36 +X14X26X35 +X15X23X46

+X15X24X36 +X15X26X34 +X16X23X45 +X16X24X35 +X16X25X34.

• If one wishes to solve the following 2d-th order polynomial maximization problem

maximize f2d(x) =
∑

1≤i1,··· ,i2d≤n

ai1···i2dxi1 · · · xi2d

subject to xTAix ≤ 1, i = 1, ...,m,

(10)
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then the corresponding (non-convex) SDP relaxation problem is

maximize pd(X)

subject to Tr(AiX) ≤ 1, i = 1, ...,m

X � 0,

(11)

where pd(X) is a d-th order polynomial in X.

• Suppose that (11) has an α-approximation solution, then (10) admits an overall O
(

α

(ln(mn))d

)
approximation solution.

• Technical tool: the hyper-contractive property of Gaussian distributions:

? Suppose that f is a multivariate polynomial with degree r. Let x ∈ N(0, I). Suppose that

p > q > 0. Then

(E|f(x)|p)1/p ≤ κrcrpq(E|f(x)|q)1/q

where κr is a constant depending only on r, and cpq =
√

(p− 1)(q − 1).

? Proof was based on the Paley-Zygmund inequality and was non-constructive
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Concluding Remarks

• An on-going research

• Provided a SDP relaxation scheme for quartic optimization, allowing approximation quality to

be data-independent

• Effectively reduced the quartic optimization problem to quadratic SDP problem

• Many issues remaining: efficient algorithms to approximate nonconvex quadratic SDP over

simplex? over box? etc
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Thank You!
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