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Abstract

It has been noticed in the last 10 years or so that broadband measurements of teletra±c shows that

the data exhibit the following characteristic properties: heavy tails, self-similarity and long-range

dependence, starting with an in°uential sequence of papers including [10] and [14]. A common

explanation of the observed self-similarity and long-range dependence is exactly via heavy tails:

heavy tailed transmission times, heavy tailed burst lengths, etc. See e.g. [1], [2], [13].

A standard model connecting the empirical facts of heavy tails, self-similarity and long-range

dependence is the ON/OFF model. In it, tra±c is generated by a large number of independent

ON/OFF sources (such as workstations in a big computer space). An ON/OFF source transmits

data at a constant rate to a server if it is ON and remains silent if it is OFF. Every individual

ON/OFF source generates an ON/OFF process consisting of independent alternating ON- and

OFF-periods. The ON-periods are iid and so are the lengths of the OFF periods. Moreover, the

ON- and the OFF-periods for each source are independent. Teletra±c is then generated by the

superposition of a large number of these iid ON/OFF sources. Support for this model in the form

of statistical analysis of Ethernet Local Area Network tra±c of individual sources was provided in

[14]. One of the conclusions of this study was that the lengths of the ON- and the OFF-periods

are heavy tailed and in fact Pareto-like with tail index ® between 1 and 2. Further evidence

on in¯nite variance distributions in teletra±c is given in [2], [3], [10], which present evidence of

in¯nite variance Pareto like tails in ¯le lengths, transfer times and idle times in the World Wide

Web tra±c.

One of the immediate consequences of the assumption of Pareto-like tails with tail index ®

between 1 and 2 is that a stationary version of the ON/OFF-process of an individual source

exhibits LRD in the sense that its covariance function stays positive and is not integrable; see [6]

for a mathematical proof. This mathematical fact explains LRD at the individual source level, but

not at the level of teletra±c. In the ON/OFF model, teletra±c is considered as the superposition

of iid individual ON/OFF processes, and its workload is the integrated superposition of the

ON/OFF processes.

An alternative model that generates a tra±c with similar statistical properties is the so-called

M=G=1 model, in which sessions arrive according to a Poisson process and session durations

are heavy tailed. The key paper [11] showed that for both ON/OFF model and M=G=1 model,

when the number of input \streams" is getting large, and the time scale increases as well, the

deviation from the mean of the total work input into the system converges to one of the two well



known processes, either L¶evy stable motion, or Fractional Brownian motion, depending on the

relative rates at which the number of \streams" and the time scale grow.

From this point of view from the \bird-eye" point of view, a network driven by heavy tailed input

looks like performing either stable motion or Fractional Brownian motion around its mean. This

behaviout has since been generalized to network of queues in [4], and to random ¯elds by [9].

However, the assumptions underlying this limiting behaviour are very speci¯c, and we will con-

sider the possible limiting behaviour of the queue under a very general scenario of input forming

a marked stationary point process, with the points being the moments the jobs arrive to the

quere, and the marks being the work requirements for each job. Using the Palm theory, we will

see that there are many more di®erent possible types of the limiting behaviour of a queue than

just a stable motion or a Fractional Brownian motion. In fact, the Fractional Brownian motion

scenario turns out to be much more robust towards chaging the speci¯c assumptions than the

stable motion scenario does.

Furthermore, we will see that, in fact, in some cases, the Fractional Brownian motion limit can

appear exactly one would, naively, expect a the stable limit instead.

The ¯rst lecture will be of an introductory type, while the second lecture will discuss the new

results. The latter are based on [12] and [5].
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