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The goal in these lectures is to describe a control-
theoretic approach to regulating complex networks as
found in communication systems, supply chains, build-
ing systems, and many other applications.

Consider the systems that are controlled very well
today by man-made control systems: Examples include
the cruise control in most automobiles, airplanes at take-
off, as well as in level flight in the face of wind and
unfortunate birds, highway systems, and the electric
power grid. All of these systems may appear highly com-
plex, but this complexity is reduced through appropriate
feedback mechanisms. Moreover, although an airplane is
complex, an effective control design can be obtained by
consideration of a naive linear model.

In the first of these two lectures we consider two very
simple network models - the fluid model, and the con-
trolled random walk (CRW) model. Although the fluid
model has little value for prediction, it is a valuable tool
in control of networks, just as fluid models are routinely
used for control in other applications (e.g. [1]). There are
many results that justify this point of view: It is known
that stability of a fluid model implies stability of the
stochastic model [6], [3], [4], and solutions to dynamic
programming equations (i.e., the value functions) for the
two models are closely related [7], [9], [10].

A major gap between the two models is the following.
An optimal policy is myopic with respect to the solu-
tion to the associated dynamic programming equation.
Frequently policies are proposed that are myopic with
respect to another function such as the cost function
itself. For the fluid model it is known that a myopic
policy is always stabilizing, provided the function used
in convex and monotone [2], [8], while for a stochastic
model this absolutely false. The reason for this gap is that
a stochastic model is subject to greater constraints than
the fluid model - e.g., it is possible to serve an empty
buffer in the fluid model. We show how to resolve this
gap, and in so doing obtain the celebrated MaxWeight
policy of Tassiulus [5], and many extensions for robust
control and distributed control of complex networks [11].

Given so much insight regarding the structure of value
functions, it is natural to apply ideas from machine
learning to construct policies, and tune them on-line.
The second lecture will provide an introduction to TD-
learning for value function approximation, based on the
final chapter of [10]. Given a parameterized family of
functions, this algorithm constructs thebest approximate
value function over this class. Applications to control of
networks is in its infancy — some recent results [12]
and potential directions for research will be described.
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