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In this work we consider the optimization of a multivariate fourth order (quartic) polynomial
under quadratic constraints. The problem can take either the maximization form

maximize f(x) =
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to xTAix ≤ 1, i = 1, ..., m,

(1)

or the minimization form

minimize f(x) =
∑

1≤i,j,k,`≤n

aijk`xixjxkx`

subject to xTAix ≥ 1, i = 1, ..., m,

(2)

where Ai’s are positive semidefinite matrices in Rn×n, i = 1, ...,m. Let fmax and fmin denote the
optimal values of (1) and (2) respectively. Throughout, we assume fmin ≥ 0.

Quartic optimization problems arise in various engineering applications such as independent
component analysis [2], blind channel equalization in digital communication [4] and sensor localiza-
tion [9]. From the complexity standpoint, the nonconvex quartic polynomial optimization problems
(1)–(2) are NP-hard. This motivates us to consider polynomial time relaxation procedures that
can deliver provably high quality approximate solutions.

As a special case of the general polynomial optimization problem, the quartic optimization
problems (1)–(2) can be relaxed using the standard SOS technique of semidefinite programming
relaxation. Specifically, by representing each nonnegative polynomial as a sum of squares of some
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other polynomials (SOS) [3] of a given degree, it is possible to relax each polynomial inequality as a
convex linear matrix inequality (LMI). In this way, as the polynomial degree in SOS representation
increases, the nonconvex quartic optimization problems (1)–(2) can be approximated by a hierarchy
of semidefinite programs (SDP) with increasing size. While this SOS relaxation scheme can achieve,
at least theoretically, asymptotic global optimality, the size of the resulting SDPs in the hierarchy
grows exponentially fast. This presents great computational challenges in practice, so much so that
it severely limits the application scope of the SOS relaxation approach. Indeed, the most effective
use of SDP relaxation so far has been for the quadratic optimization problems whereby only the first
level relaxation in the SOS hierarchy is used. Even though such SDP relaxation does not always
provide a tight approximation in general, it does lead to provably high quality approximate solution
for certain type of quadratic optimization problems. The latter includes various graph problems
such as the Max-Cut problem [1] as well as some homogeneous nonconvex quadratic optimization
problems [5–8,10].

In this work we present a general semidefinite relaxation scheme for n-variate quartic polynomial
optimization under homogeneous quadratic constraints. Unlike the existing sum-of-squares (SOS)
approach which relaxes the quartic optimization problems to a sequence of (typically large) linear
semidefinite programs (SDP) over Rn2×n2

, our relaxation scheme leads to a (possibly nonconvex)
quadratic optimization problem with linear constraints over the semidefinite matrix cone in Rn×n.
It is shown that each α-approximate solution of the relaxed quadratic SDP can be used to generate
in randomized polynomial time an O(α/ ln2(mn))-approximate solution for the original quartic op-
timization problem, where m is the number of constraints in the problem. In the case where only
one quadratic constraint is present, we provide a polynomial time Ω((n ln2 n)−1)-approximation
algorithm for the quartic maximization problem and a polynomial time O(n2)-approximation al-
gorithm for the quartic minimization problem.
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