Minimizing Submodular Functions

Satoru Iwata
RIMS, Kyoto University,
Kyoto 606-8502, Japan
iwata@kurims.kyoto-u.ac.jp

A function f defined on the subsets of a finite set V is submodular if it satisfies

$$
f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y), \quad \forall X, Y \subseteq V .
$$

Submodular functions are discrete analogues of convex functions [5]. Examples include cut capacity functions, matroid rank functions, and entropy functions.

The first polynomial algorithm for submodular function minimization by Grötschel, Lovász, and Schrijver [1] is based on the ellipsoid method. Recently, combinatorial polynomial algorithms have been developed [3, 7], and the current best weakly and strongly polynomial bounds $[2,6]$ are $O\left(\left(n^{4} \mathrm{EO}+n^{5}\right) \log M\right)$ and $O\left(n^{5} \mathrm{EO}+n^{6}\right)$, where EO is the time for function evaluation, n is the cardinality of the ground set V and M is the maximum absolute value of the function values.

In this talk, I will review algorithms and applications of minimizing submodular functions. In particular, I will present a new combinatorial algorithm obtained in recent joint work with Jim Orlin [4].

References

[1] M. Grötschel, L. Lovász, and A. Schrijver: The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1 (1981), 169-197.
[2] S. Iwata: A faster scaling algorithm for minimizing submodular functions, SIAM J. Comput., 32 (2003), 833-840.
[3] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm for minimizing submodular functions, J. ACM, 48 (2001), 761-777.
[4] S. Iwata and J. B. Orlin: A simple combinatorial algorithm for submodular function minimization, Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (2009), to appear.
[5] L. Lovász: Submodular functions and convexity. Mathematical Programming - The State of the Art, A. Bachem, M. Grötschel and B. Korte, eds., Springer-Verlag, 1983, 235-257.
[6] J. B. Orlin: A faster strongly polynomial time algorithm for submodular function minimization, Math. Programming, to appear.
[7] A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly polynomial time, J. Combin. Theory, B80 (2000), 346-355.

