

Gas Storage: Valuation and Optimization

Operations Research Seminar January 2008

Cyriel de Jong Maycroft Consulting / Erasmus University Rotterdam

dejong@maycroft.com

POWER

Valuation Risk modelling Trading tools

GAS

Risk policyclopment Frading stratesics

> Workshops Reports Articles

EMISSIONS

Overview

- Storage as portfolio tool or trading tool
- Market based valuation on spot and forward markets: different trading strategies and optimizations
- The least-squares Monte Carlo approach

Why real options?

- Fixed price scenarios do not correspond to real life
- Assets can be considered as an option to capture margins: dynamic prices
- Asset provides flexibility, which may create value: uncertainty > risk

Why storage?

- Demand side very price inelastic and seasonal
 - ~ Heating
 - ~ Power production
 - ~ Industrial use
 - E.g. UK: winter / summer demand = 5 / 1
- Supply more or less constant
- Storage needed to meet expected variations and back-up for unexpected variations

Storage need

		Working Volume 2000	Working Volume 2030
	OECD North America	129	215
	OECD Europe	61	138
	OED Pacific	2	14
	Transition Economies	132	266
Source: IEA	Developing Countries	4	51
	World	328	685

Storage parameters

- Working gas: can be effectively used
 - Gas in storage: the volume (out of the working gas) in store at any point in time
- Injection rate
- Withdrawal rate / Send-out rate / Deliverability
 - ~ May depend on storage level or season
- Cycling:
 - ~ Number of times the storage can be refilled in a year
 - ~ Combines Working Gas, Inj and Withdr rate

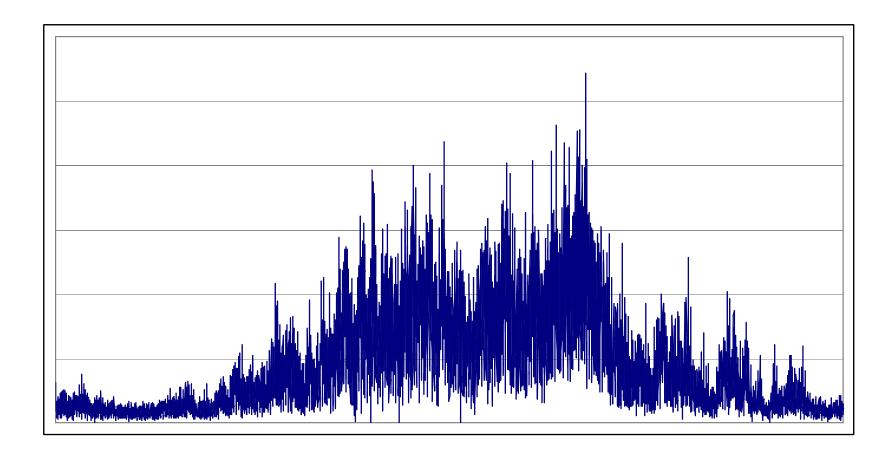
Types of storages

- LNG: small and high deliverability
- Depleted reservoirs:
 - ~ E.g. marginal reservoirs with cushion gas in place
 - ~ Mostly seasonal
- Aquifers: underground formations that are initially filled with water
 - ~ Intermediate deliverability
 - ~ Expensive to develop
- Salt caverns
 - Small, high deliverability, quickly change flow direction

Application of storage

- Portfolio Peak-shaving / Supply security:
 - ~ Winter-summer variation
 - ~ Unexpected high demand days / hours in winter
 - * E.g. in the NL Gasunie pricing is based on maximum demand in any hour of a year
- Power plant optimization:
 - ~ Power plants often produce only in peak hours
 - ~ Hourly flexibility required: re-inject during night
- Trading:
 - ~ Season, Months, Days, Hours

Example load development



Trading Valuation

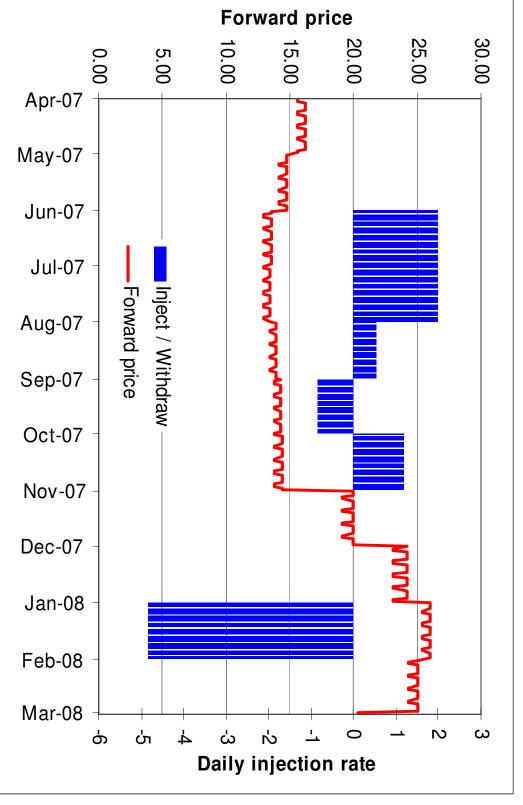
- Increasingly possible
- Optimal operation depends on the development of market prices and the ability to trade
- A user can benefit from:
 - ~ Long-term price movements (stable):
 - * Forward curve
 - * Yielding an intrinsic value
 - ~ Short-term price movements (volatile):
 - * Spot dynamics
 - * Adding an extra option/extrinsic value



I. Intrinsic Strategy

- Source of revenue:
 - ~ Seasonality = intrinsic value
- Intrinsic value strategy:
 - Static strategy, entered into at the start of storage contract:
 - ~ Inject in cheapest expected periods
 - ~ Withdraw in most expensive expected periods
 - ~ Take into account technical constraints and costs
 - Use forward curve to lock in value =
 capture time spreads

nsic Value



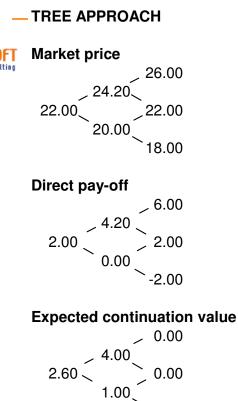
II. (Full) Real Option Strategy

- Forward strategy ignores daily asset flexibility and daily market volatility
- Trading decisions on day-to-day basis
- Exploit unexpectedly low prices to inject and unexpectedly high prices to withdraw
- May be combined with (rolling) intrinsic
- 50-200% extra value on NBP, ZB and TTF
- Practical limitation: spot liquidity

Least-squares Monte Carlo

- Carriere (IME, 1996), Longstaff and Schwartz (RFS 2001, Risklab 2001 presentation)
- Breakthrough in convergence speed
- Applied to American-style financial (put) options
- Idea:
 - Avoid the problem of forward-looking nature of simulations
 - OLS regressions to calculate 'expected continuation value' and thus the optimal exercise strategy

- Suppose we have an American style option:
 - ~ Exercise price € 20
 - ~ Time-to-maturity 2 days
 - ~ No dividends, no interest
- We compare a 'traditional' tree to 'LSMC'
- Central to both valuation is the comparison at time t=0 and t=1 of the:
 - ~ Direct pay-off = P(t) 20
 - ~ Expected continuation value = E[CV]
 - * Tree approach: E[CV(t)] = (CV(t+1,up) + CV(t+1,down))/2
 - * Simulation approach: E[CV(t)] =fitted value of regression



Option value = maximum of a) direct pay-off OR 0 b) exp. cont. value $2.60 \stackrel{4.20}{>} 2.00$ $1.00 \stackrel{0.00}{>}$

0.00

Strategy

•••			
	∠ exerc	wait	exerc
_ exe	rc	wait	wait
wait	Sexerc	wait	wait
wa	ait	wait	wait
	none	wait	wait

SIMULATION APPROACH

Market price

22.00-25.00-24.00 22.00-23.00-26.00 22.00-22.00-19.00 22.00-21.00-21.00 22.00-19.00-17.50

Direct pay-off

2.00 - 5.00 - 4.002.00 - 3.00 - 6.002.00 - 2.00 - -1.002.00 - 1.00 - 1.002.00 - -1.00 - -2.50

Regression at t = 1: Regress CV(2) on P(1) CV = -16.5 + 0.85*P + e

Expected continuation value

2.32-	4.75-	0.00
2.32-	3.05-	0.00
2.32-	2.20-	0.00
2.32-	1.35-	0.00
2.32-	0.00-	0.00

Option value = maximum of a) direct pay-off OR 0 b) exp. cont. value 2.32-5.00-4.002.32-3.05-6.002.32-2.20-0.002.32-1.35-1.002.32-0.00-0.002.32Strategy wait exerc exerc wait wait exerc wait wait none wait wait exerc wait wait none

Application to gas storage

"Gas storage valuation using a Monte Carlo method" Alexander Boogert and Cyriel de Jong To appear in *Journal of Derivatives*

Decision

- At time t, for given price S(t) and volume v(t), storage operator has to optimally select:
 - ~ The value of doing nothing:
 - * Expected value of having v(t) also at time t+1
 - ~ The value of injecting:
 - * Expected value of having v(t) + Inj at time t+1
 - * Minus injection costs (market)
 - ~ The value of withdrawing:
 - * Expected value of having v(t) Wd at time t+1
 - * Plus withdrawal revenues (market)

Mathematical Formulation

$$v(t) := v(0) + \sum_{i=1}^{t} \Delta v(i-1)$$

Inventory level

$$h(S(t), \Delta v(t)) := \begin{cases} -c(S(t))\Delta v(t) & \text{inject at day } t \\ 0 & \text{do nothing at day } t \\ -p(S(t))\Delta v(t) & \text{withdraw at day } t \end{cases}$$

Cash-flows

$$\sup_{\pi} \mathbf{E} \left[\sum_{t=0}^{T} e^{-\delta t} h(S(t), \Delta v(t)) + e^{-\delta(T+1)} q(S(T+1), v(T+1)) \right]$$

Optimal strategy (π): maximize discounted cashflows, including termination value (q)

Mathematical Formulation

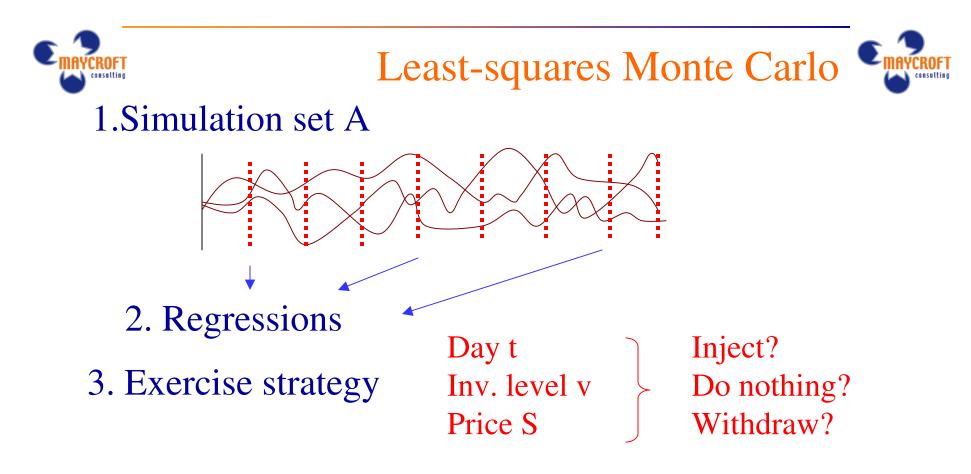
U(t, S(t), v(t)) Storage value

 $C(t,S(t),v(t),\Delta v):=\mathbf{E}\left[e^{-\delta}U(t+1,S(t+1),v(t)+\Delta v)\right]$

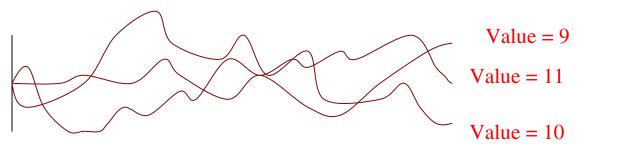
Continuation value

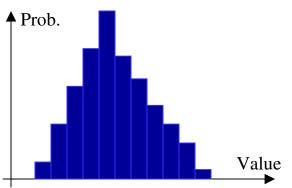
 $U(t, S(t), v(t)) = \max_{\Delta v \in \mathcal{D}(t, v(t))} \left\{ h(S(t), \Delta v) + C(t, S(t), v(t), \Delta v) \right\}$

Storage value under optimal action Δv on day t, for set of allowed actions D



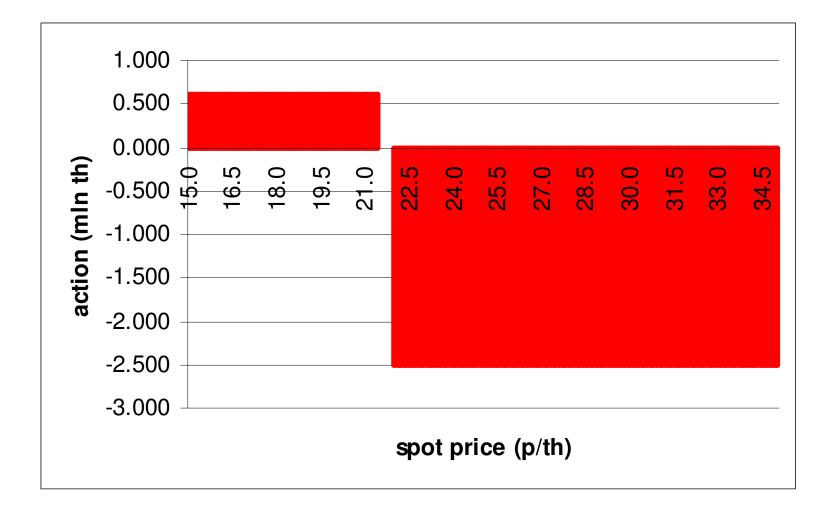
4. Simulation set B: Evaluate strategy



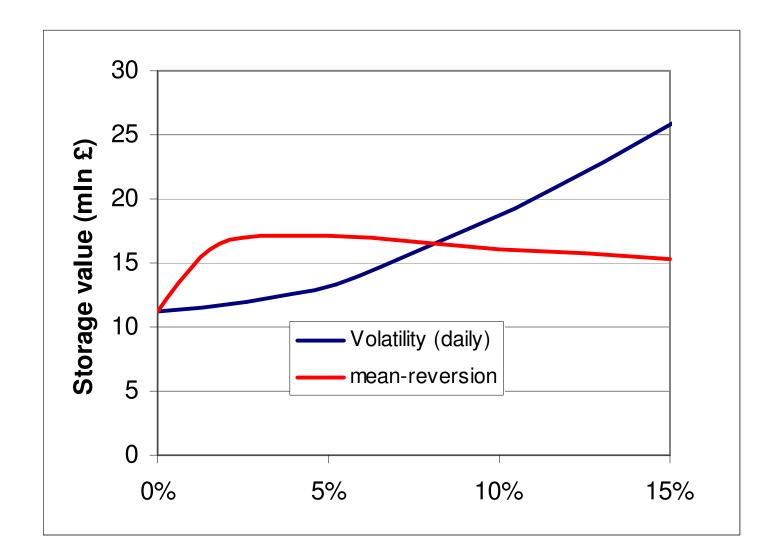


Exercise frontier example

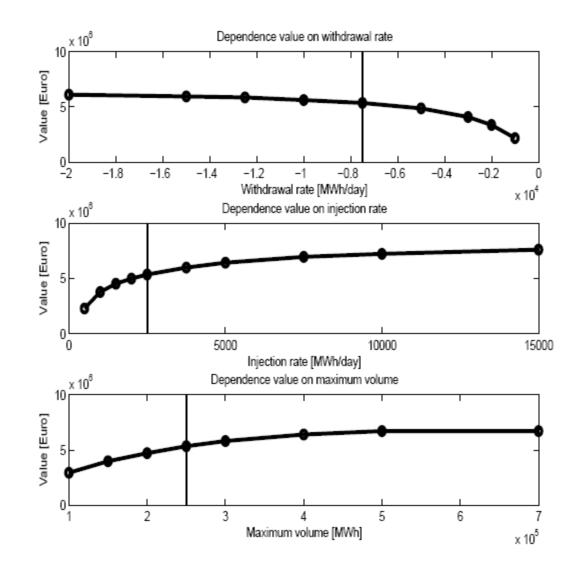
(for a day t and inventory level L)



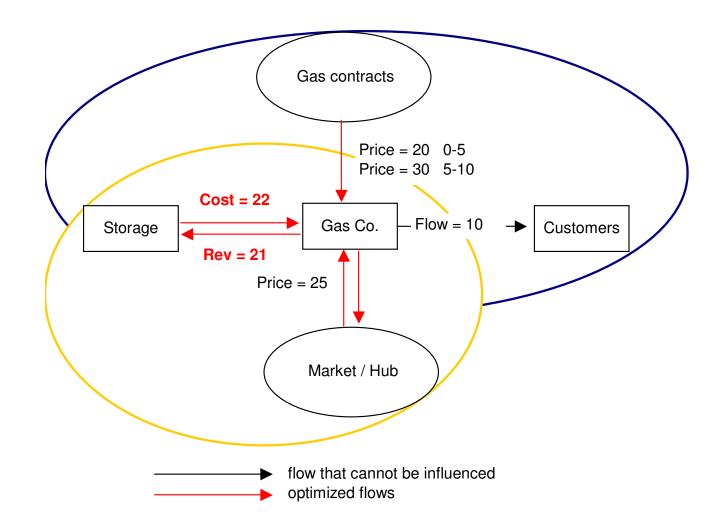
Value drivers



Storage Design



Storage cost & revenue



Conclusion

- Simulation-based storage model may be used for valuation and day-to-day management of storage
- Major advantages: accuracy and flexibility
- Simulations should contain long-term and seasonal uncertainty
- Provides benchmark to which portfolio decisions can be compared
- Major challenge: incorporate other portfolio parts
 - ~ Customer load / demand
 - ~ Multiple sources of supply and flexibility