Turbocounting: Network Traffic Measurement
using Sparse Graph Counters

Balaji Prabhakar
Stanford University

Joint work with:
Yi Lu, Andrea Montanari, Sarang Dharmapurikar and Abdul Kabbani

Overview

- Background

— Approaches to network traffic measurement
+ Exact, per-flow accounting: Adversarial inputs
« Approximate, large-flow accounting: Heavy-tailed flow sizes

« Qur approach
— The Counter Braid architecture
— Optimality of the Maximum Likelihood Estimator
— A simple, efficient Message Passing Estimator

- Performance and comparisons

* Further work

Traffic Statistics: Background

Routers collect traffic statistics; useful for
— Accounting/billing, traffic engineering, security/forensics

Several products in this area, notably

— Cisco Systems’ NetFlow, Juniper Networks’ cflowd, and Huawei
Technology’s NetStream

Key problem: At high line rates, memory technology is a limiting factor
— 500,000+ active flows, packets arrive once every 10 ns on 40 Gbps line
— This means we need fast and /large memories for implementing counters

— Memories are either fast (SRAM) or large (DRAM), need serious extra work
to get both!

This spawned two approaches
— Exact, per-flow accounting: Use hybrid SRAM-DRAM architecture

— Approximate, large-flow accounting: Use heavy-tailed nature of flow size
distribution

Per-flow Accounting

+ Definition of flow
— Set of packets with common properties (e.g. same SA-DA, protocol, ...)

« Naive approach to per-flow counting: one counter per flow

el 00O 0O 0 WEEOO e 000

[FOO OO0 B rEro0O0e00-o0
s OO0 00 OO [E FHee 0 e OO
LSB MSB LSB MSB

Problem: Need fast and large memories; infeasible

An initial approach

Shah, lyer, Prabhakar, McKeown (2001)

Hybrid SRAM-DRAM architecture
— LSBs in SRAM: high-speed updates, on-chip
— MSBs in DRAM: less frequent updates; can use slower speed, off-chip DRAMs

Foo sEl - OO 00
Interconnect /

Fi2 - I%D—O—Q\ ~speed: s —+O—0O—0—-0-"0
Counter Mgmt

Algorithm
P - l4—0—0/

SRAM DRAM

. The setup
— Line speed = SRAM speed =L; Interconnect speed = DRAM speed = L/S
- Adversarial packet arrival process

. Results
1. The counter management algorithm Longest Counter First is optimal
log(SN
2. Min. num. of bits for each SRAM counter: log () ~ log log N
log(S/S —1)

5

Related work

- Ramabhadran and Varghese (2003) obtained a simpler version of the LCF
algorithm

- Zhao et al (2006) randomized the initial values in the SRAM counters to
prevent the adversary from causing several counters to overflow closely

F l—-\ 7
Fe 0] ._-\ SRAM Interconnect —
) “" : —>

FIFO ~ > - Speed: L/S

o e

SRAM DRAM

- Main problem of exact methods
— Can't fit counters into single SRAM

— Need to know the flow-counter association
* Need perfect hash function; or, fully associative memory (e.g. CAM)

Approximate counting

- Statistical in nature
— Use heavy-tailed (often Pareto) distribution of network flow sizes
— Roughly, 80% of data brought by the biggest 20% of the flows
— S0, it makes sense to quickly identify these big flows and count their packets

Sample and hold: Estan et al (2004) propose sampling packets to catch
the large “elephant” flows and then counting just their packets

— Significantly simpler, but approximate

[1
Packets off of]
the wire v R
» Large flow? °s .
l
No
Counter
Array

« This approach spawned a lot of follow-on work
— Given the cost of memory, it strikes an excellent trade-off
— Moreover, the flow-to-counter association problem is manageable

Summary

- Exact counting methods
— Space intensive
— Complex

« Approximate methods
— Focus on large flows
— Not as accurate

Our approach

- The two problems of exact counting methods solved as follows

1. Large counter space
— By “braiding” the counters

2. Flow-to-counter association problem
— By using multiple hash functions and a “decoder”

- Braiding

A5 e OO OO0 i
21 F OO 0O0O=O0 S
= o0 O OO0
5 e OO 0O0O0OO0 [
= o0 O OO0

o
=
—
=
0
=
O
p =
O
1=

=

o B

— [

i58

10

Flow-to-counter association

« Multiple hash functions
— Single hash function leads to collisions

— However, one can use two hash functions and use the redundancy
to hopefully recover the flow size

« Main issues
— A simple decoding algorithm

— It’s performance: how much space? what decoding accuracy?
11

Decoder 1: The MLE

- Consider a single stage of counters and multiple (random) hash
functions
— Let F be the vector of flow sizes

— Then C = MF is the vector of counter values; where M is the (random)
adjacency matrix of dimensions mxn; m<n

— Let{f} be lID, and let H(F) be the entropy of the flow-size vector
— Clearly, the total amount of counter space needed cannot be less than H(F)

- We get the following result: C = MF is optimal; that is, the space
needed asymptotically equals H(F)
— This is interesting because C is a linear, incremental function of the data, F
— Itis not a priori obvious that F can be losslessly recovered from C

— However, the decoder is very complex: it is the Maximum Likelihood
Estimator (or MLE)

12

Decoder 1: The MLE

Since m < n, the linear equation C = MF is under-determined

For an instance of the problem, let F', ..., FK be the list of all
solutions

The optimal solution FMLE is the one which is most probable
according the prior, Py, of the flow size distribution:
P, (FME) >= P, (Fi) forall j

— More precisely, we use the Kullback-Leibler (or relative entropy) distance
between the empirical distribution of Fi and P,

13

Optimality of MLE

- Counter braids: (G, q), g > 2
— G: graph with input nodes, I, registers (counters), R
— Each regqister is g-ary, reset on saturation

- Storage: F:N! — Z(’f

- Estimation: F : fo — N/

o

35

14

Optimality

« Admissible flow size distribution:
— Power-law tails: P(X; > x) < Ax™¢

— Decreasing digit entropy: If Z X;(a)q", then entropy of X, ()
a>0
is monotonically decreasing in [

- Typical set decoder (or MLE):
x € T,(px) if its type 60, satisfies D(0;|px) <n=7, v € (0,1)

T . r if Tn(p*;y) - {:’I"\},
Hy) = { « Af [To(pesy)| # L.

- Theorem: The typical set decoder is asymptotically optimal; i.e. the
number of bits needed equals the entropy lower bound.

15

Related Work

- Compressed sensing

— Storing sparse (binary) vectors using random linear transformations

« Candes and Tao, Donoho, Indyk, Muthukrishnan, Wainwright, and many
others

— Linear transformations need not sparse: lots of updating, space
— LP decoding: worst-case cubic complexity

- Noiseless data compression with LDPC codes
— Use regular graphs (i.e. not hash-based)
— Typical pairs decoding:
« Caire, Shamai, Verdu
- Aji, Jin, Khandekar, MacKay, McEliece

16

Decoder 2: The MP estimator

The MLE is NP-hard, in general; need something very simple for our
application

We develop a message passing algorithm, inspired by iterative decoding
techniques

17

Message Passing Algorithm

for Solving C = MF

Number of flows: n
« Number of counters: m

« Consider a single layer of the counter braid architecture

« Need to solve the equation: C = MF, where
— C is vector of counter values
— Fis vector of flow values
— M is the random incidence matrix of flows hashing into counters

« When n > m, we get a system of under-determined equations
— Multiple solutions exist for the equation C = MF
— The ML decoder chooses that solution which is most likely
— But, this is too complex for implementation
— We will now see a simple, suboptimal message-passing algorithm

18

Message Passing Algorithm
for Solving C = MF

Jio c,

al

flai(t) = 1max { (Ca - Zuja(t - 1)) . 0}
i

vialt) = min{pm(1)}

filt) = minfua(t)}.

19

Properties of the MP Algorithm

- Sandwich property:

LEMMA 1. If vio(t — 1) < f; for every i and a, then
Vio(t) = fi. Conversely, if v;,(t — 1) > f; for every i
and a, then vi.(t) < f;.

— Therefore, if we start with all F (0) = 0, then subsequent estimates

alternately upper- and lower-bound the true value, F. We have
convergence if the sandwich closes.

- The MP algorithm is exact on trees.

— If there are a large number of counters relative to flows (more
precisely, if m > 2n), then the graph becomes a forest

— But, we are interested in m << n

T

20

The Correct Number of Counters

We see empirically that if m = 1.2 n, then we get good decoding
with the message-passing algorithm

5 ! | I !

average absolute error

0 |
0.5 1 15 2 2.5 3
number of counters. x n 1

The 2-stage Architecture: Counter Braids

In -- First stage: Lots of shallow counters;
mouse traps

-- Second stage: V.few deep counters;
elephant traps

-- First stage counters hash into the
second stage; an “overflow” status bit
on first stage counters indicates if the
counter has overflowed to the second
stage

Elephant
Traps - If a first stage counter overflows, it
Mouse resets and counts again; second stage
Traps counters track most significant bits

-- Apply MP algorithm recursively

22

Performance of the MP Algorithm

« Interested in absolute error as a function of flow size
— Pareto flow sizes
— Entropy = 1.96 bits
— Max flow size = 7364
— Number of flows = 100,000

23

Counter Braids vs. the Single-stage

Architecture

—— zingle stags

1000 i ounter bral ids

100 \[

10

0.1

Entropy
0.01

Error
—
]

0.001 k
1 2 3 4 5 6 7 8 9 10 11 12 13

0.0001
Number of bits/flow

24

It’s much better...

(comparison for 3xEntropy, incl. status bit!)

120

100 - = »

oo
=

—+— single stage
~=- counter braids

Cumulative Percent of Flows
p= (o)]
) o

20
0
= — [t =t e w o =t oo e} o
-— 4 5] o o L —
— at] [Tg]

Absolute Value of Error

25

The counter braid architecture is

Optimal: Asymptotic number of bits needed matches entropy lower

bound

An incremental compressor: As packets arrive, flow sizes not known

in advance
Sparse, random hash-based: Fast updates, easy decoding
Multi-layered: Easy to pipeline

26

Conclusions

Cheap and accurate solution to the network traffic
measurement problem

— Message Passing Decoder
— Counter Braids

Initial results showed that the performance was quite good

Further work

— Multi-stage generalization of Counter Braids
— Analyze MP algorithm

— Multi-router solution: same flow passes through many routers

27

