
Turbocounting: Network Traffic Measurement
using Sparse Graph Counters

Joint work with:
Yi Lu, Andrea Montanari, Sarang Dharmapurikar and Abdul Kabbani

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997. Balaji PrabhakarBalaji Prabhakar

Stanford University

2

Overview

• Background
– Approaches to network traffic measurement

• Exact, per-flow accounting: Adversarial inputs
• Approximate, large-flow accounting: Heavy-tailed flow sizes

• Our approach
– The Counter Braid architecture
– Optimality of the Maximum Likelihood Estimator
– A simple, efficient Message Passing Estimator

• Performance and comparisons

• Further work

3

Traffic Statistics: Background
• Routers collect traffic statistics; useful for

– Accounting/billing, traffic engineering, security/forensics

• Several products in this area, notably
– Cisco Systems’ NetFlow, Juniper Networks’ cflowd, and Huawei

Technology’s NetStream

• Key problem: At high line rates, memory technology is a limiting factor
– 500,000+ active flows, packets arrive once every 10 ns on 40 Gbps line
– This means we need fast and large memories for implementing counters
– Memories are either fast (SRAM) or large (DRAM), need serious extra work

to get both!

• This spawned two approaches
– Exact, per-flow accounting: Use hybrid SRAM-DRAM architecture
– Approximate, large-flow accounting: Use heavy-tailed nature of flow size

distribution

4

Per-flow Accounting

• Definition of flow
– Set of packets with common properties (e.g. same SA-DA, protocol, …)

• Naïve approach to per-flow counting: one counter per flow

F1
F2

Fn

43

4

15

LSB MSB

44

4

15

LSB MSB

• Problem: Need fast and large memories; infeasible

5

An initial approach
Shah, Iyer, Prabhakar, McKeown (2001)

• Hybrid SRAM-DRAM architecture
– LSBs in SRAM: high-speed updates, on-chip
– MSBs in DRAM: less frequent updates; can use slower speed, off-chip DRAMs

F1
Fl2

Fn

35
4

15

SRAM DRAM

Interconnect
-- Speed: L/S

Counter Mgmt
Algorithm

• The setup
– Line speed = SRAM speed = L; Interconnect speed = DRAM speed = L/S
– Adversarial packet arrival process

• Results
1. The counter management algorithm Longest Counter First is optimal

2. Min. num. of bits for each SRAM counter:

6

Related work
• Ramabhadran and Varghese (2003) obtained a simpler version of the LCF

algorithm
• Zhao et al (2006) randomized the initial values in the SRAM counters to

prevent the adversary from causing several counters to overflow closely

• Main problem of exact methods
– Can’t fit counters into single SRAM
– Need to know the flow-counter association

• Need perfect hash function; or, fully associative memory (e.g. CAM)

SRAM DRAM

Interconnect
-- Speed: L/SCMA SRAM

FIFO

F1
Fl2

Fn

7

Approximate counting
• Statistical in nature

– Use heavy-tailed (often Pareto) distribution of network flow sizes
– Roughly, 80% of data brought by the biggest 20% of the flows
– So, it makes sense to quickly identify these big flows and count their packets

• Sample and hold: Estan et al (2004) propose sampling packets to catch
the large “elephant” flows and then counting just their packets
– Significantly simpler, but approximate

Large flow?

Packets off of
the wire

Yes

No
Counter

Array

• This approach spawned a lot of follow-on work
– Given the cost of memory, it strikes an excellent trade-off
– Moreover, the flow-to-counter association problem is manageable

8

Summary

• Exact counting methods
– Space intensive
– Complex

• Approximate methods
– Focus on large flows
– Not as accurate

9

Our approach
• The two problems of exact counting methods solved as follows

1. Large counter space
– By “braiding” the counters

2. Flow-to-counter association problem
– By using multiple hash functions and a “decoder”

• Braiding

1

2

35

3

1

10

Incrementing

1

2

35

3

2

1

2

35

4

2

11

Flow-to-counter association
• Multiple hash functions

– Single hash function leads to collisions
– However, one can use two hash functions and use the redundancy

to hopefully recover the flow size

1

2

35

3

0

3

40

3

15

1

2

35

3

2

6

36

3

455

• Main issues
– A simple decoding algorithm
– It’s performance: how much space? what decoding accuracy?

12

Decoder 1: The MLE

• We get the following result: C = MF is optimal; that is, the space
needed asymptotically equals H(F)
– This is interesting because C is a linear, incremental function of the data, F
– It is not a priori obvious that F can be losslessly recovered from C
– However, the decoder is very complex: it is the Maximum Likelihood

Estimator (or MLE)

• Consider a single stage of counters and multiple (random) hash
functions
– Let F be the vector of flow sizes
– Then C = MF is the vector of counter values; where M is the (random)

adjacency matrix of dimensions m x n; m < n
– Let {fi} be IID, and let H(F) be the entropy of the flow-size vector
– Clearly, the total amount of counter space needed cannot be less than H(F)

13

Decoder 1: The MLE
• Since m < n, the linear equation C = MF is under-determined

• For an instance of the problem, let F1, …, Fk be the list of all
solutions

• The optimal solution FMLE is the one which is most probable
according the prior, Pflow, of the flow size distribution:
 Pflow(FMLE) >= Pflow(Fj) for all j

– More precisely, we use the Kullback-Leibler (or relative entropy) distance
between the empirical distribution of Fj and Pflow

14

Optimality of MLE

• Counter braids: (G, q), q 2
– G: graph with input nodes, I, registers (counters), R
– Each register is q-ary, reset on saturation

• Storage:

• Estimation:

15

Optimality
• Admissible flow size distribution:

– Power-law tails:

– Decreasing digit entropy: If , then entropy of

 is monotonically decreasing in

• Typical set decoder (or MLE):

• Theorem: The typical set decoder is asymptotically optimal; i.e. the
number of bits needed equals the entropy lower bound.

16

Related Work

• Compressed sensing
– Storing sparse (binary) vectors using random linear transformations

• Candes and Tao, Donoho, Indyk, Muthukrishnan, Wainwright, and many
others

– Linear transformations need not sparse: lots of updating, space
– LP decoding: worst-case cubic complexity

• Noiseless data compression with LDPC codes
– Use regular graphs (i.e. not hash-based)
– Typical pairs decoding:

• Caire, Shamai, Verdu
• Aji, Jin, Khandekar, MacKay, McEliece

17

Decoder 2: The MP estimator
• The MLE is NP-hard, in general; need something very simple for our

application

• We develop a message passing algorithm, inspired by iterative decoding
techniques

18

Message Passing Algorithm
for Solving C = MF

• Number of flows: n
• Number of counters: m

• Consider a single layer of the counter braid architecture

• Need to solve the equation: C = MF, where
– C is vector of counter values
– F is vector of flow values
– M is the random incidence matrix of flows hashing into counters

• When n > m, we get a system of under-determined equations
– Multiple solutions exist for the equation C = MF
– The ML decoder chooses that solution which is most likely
– But, this is too complex for implementation
– We will now see a simple, suboptimal message-passing algorithm

19

Message Passing Algorithm
for Solving C = MF

20

Properties of the MP Algorithm
• Sandwich property:

– Therefore, if we start with all Fe(0) = 0, then subsequent estimates
alternately upper- and lower-bound the true value, F. We have
convergence if the sandwich closes.

• The MP algorithm is exact on trees.
– If there are a large number of counters relative to flows (more

precisely, if m > 2n), then the graph becomes a forest
– But, we are interested in m << n

21

The Correct Number of Counters
• We see empirically that if m = 1.2 n, then we get good decoding

with the message-passing algorithm

22

The 2-stage Architecture: Counter Braids

!"#$

%&'()

*+$(,'-%

%&'()

Mouse
Traps

Elephant
Traps

-- First stage: Lots of shallow counters;
mouse traps

-- Second stage: V.few deep counters;
elephant traps

-- First stage counters hash into the
second stage; an “overflow” status bit
on first stage counters indicates if the
counter has overflowed to the second
stage

-- If a first stage counter overflows, it
resets and counts again; second stage
counters track most significant bits

-- Apply MP algorithm recursively

23

Performance of the MP Algorithm
• Interested in absolute error as a function of flow size

– Pareto flow sizes
– Entropy = 1.96 bits
– Max flow size = 7364
– Number of flows = 100,000

24

Counter Braids vs. the Single-stage
Architecture

Entropy

25

It’s much better…
(comparison for 3xEntropy, incl. status bit!)

26

Features

• The counter braid architecture is
– Optimal: Asymptotic number of bits needed matches entropy lower

bound
– An incremental compressor: As packets arrive, flow sizes not known

in advance
– Sparse, random hash-based: Fast updates, easy decoding
– Multi-layered: Easy to pipeline

27

Conclusions

• Cheap and accurate solution to the network traffic
measurement problem
– Message Passing Decoder
– Counter Braids

• Initial results showed that the performance was quite good

• Further work
– Multi-stage generalization of Counter Braids
– Analyze MP algorithm
– Multi-router solution: same flow passes through many routers

