
Balaji Prabhakar
Departments of EE and CS

Stanford University

Randomized Network Algorithms:
An Overview and Recent Results

2

Network algorithms

• Algorithms implemented in networks, e.g. in

– switches/routers
 scheduling algorithms
 routing lookup
 packet classification
 security

– memory/buffer managers
 maintaining statistics
 active queue management
 bandwidth partitioning

– load balancers

– web caches
 eviction schemes
 placement of caches in a network

3

Network algorithms: challenges

• Time constraint: Need to make complicated decisions very quickly
– line speeds in the Internet core 10Gbps (40Gbps in the near future)

 i.e. packets arrive roughly every 40ns
– large number of

 distinct flows in the Internet core
 requests arriving per sec at large server farms

• But, there are limited computational resources
– due to rigid space and heat dissipation constraints

• Algorithms need to be very simple so as to be implementable
– but simple algorithms may perform poorly, if not well-designed

4

Cisco GSR 12416 Juniper M160

6ft

19”

Capacity: 160Gb/s
Power: 4.2kW

3ft

2.5ft

19”

Capacity: 80Gb/s
Power: 2.6kW

IP Routers

2ft

5

A Detailed Sketch

Network
Processor

Lookup
Engine

Network
Processor

Lookup
Engine

Network
Processor

Lookup
Engine

Interconnection
Fabric

Switch

Output
Scheduler

Line cards Outputs

Packet
Buffers

Packet
Buffers

Packet
Buffers

6

Designing network algorithms

• I will illustrate the use of two ideas for designing efficient network algorithms

1. Randomization

 base decisions upon a small, randomly chosen sample of the state/input, instead of the
complete state/input

2. Power law distributions

 Internet packet traces exhibit power law distributions:
 80% of the packets belong to 20% of the flows;
 i.e. most flows are small (mice), most work is brought by a few elephants
 identifying the large flows cheaply can significantly simplify the implementation

• Two applications
– switch scheduling
– bandwidth partitioning

7

Randomization: An illustrative example

• Find the youngest person from a population of 1 billion

• Deterministic algorithm: linear search
– has a complexity of 1 billion

• A randomized version: find the youngest of 30 randomly chosen people
– has a complexity of 30

• Performance
– linear search will find the absolute youngest person (rank = 1)
– if R is the person found by randomized algorithm, we can say

 thus, we can say that the performance of the randomized algorithm is good with a high
probability

8

Randomizing iterative schemes

• Often, we want to perform some operation iteratively

• Example: find the youngest person each year

• Say in 2007 you choose 30 people at random
– and store the identity of the youngest person in memory
– in 2008 you choose 29 new people at random
– let R be the youngest person from these 29 + 1 = 30 people

– or

9

Randomized switch scheduling algorithms

joint work with Paolo Giaccone and Devavrat Shah

10

A Detailed Sketch

Network
Processor

Lookup
Engine

Network
Processor

Lookup
Engine

Network
Processor

Lookup
Engine

Interconnection
Fabric

Switch

Output
Scheduler

Line cards Outputs

Packet
Buffers

Packet
Buffers

Packet
Buffers

11

Input queued switch

• Crossbar constraints
– each input can connect to at most one output
– each output can connect to at most one input

Crossbar fabric

1

2

1 2 3

3

12

Switch scheduling

• Crossbar constraints
– each input can connect to at most one output
– each output can connect to at most one input

Crossbar fabric

1

2

1 2 3

3

13

Switch scheduling

• Crossbar constraints
– each input can connect to at most one output
– each output can connect to at most one input

Crossbar fabric

1

2

1 2 3

3

14

Switch scheduling

• Crossbar constraints
– each input can connect to at most one output
– each output can connect to at most one input

Crossbar fabric

1

2

1 2 3

3

15

Performance measures

• Throughput

– an algorithm is stable (or delivers 100% throughput) if for any
admissible arrival, the average backlog is bounded.

• Average delay or average backlog (queue-size)

16

Scheduling: Bipartite graph matching

19
34 21

18

7

1

Schedule or Matching

17

Scheduling algorithms

  Not stable

  Stable
 (Tassiulas-Ephremides 92,

 McKeown et. al. 96,
 Dai-Prabhakar 00)

  Not stable
 (McKeown-Ananthram-Walrand 96)

19
34 21

18

7

1

Practical
Maximal Matchings

Max Wt Matching

19

18

Max Size Matching

19

1

7

18

The Maximum Weight Matching Algorithm

• MWM: performance
– throughput: stable (Tassiulas-Ephremides 92; McKeown et al 96; Dai-Prabhakar 00)

– backlogs: very low on average (Leonardi et al 01; Shah-Kopikare 02)

• MWM: implementation
– has cubic worst-case complexity
 (approx. 27,000 iterations for a 30-port switch)
– MWM algorithms involve backtracking:
 i.e. edges laid down in one iteration may be removed in a subsequent iteration
 algorithm not amenable to pipelining

19

Switch algorithms

 Stable and low backlogsNot stable

Better performance

Easier implementation

Maximal matching Max Wt Matching

19

18

Max Size Matching

19

1

7

 Not stable

20

Randomized approximation to MWM

• Consider the following randomized approximation:
At every time
 - sample d matchings independently and uniformly
 - use the heaviest of these d matchings to schedule packets

• Ideally we would like to use a small value of d. However,…

Theorem. This algorithm is not stable even when d = N. In fact,
 when d = N, the throughput is at most
 (Giaccone-Prabhakar-Shah 02)

21

Tassiulas’ algorithm

Next time MAX

Previous matching
 S(t-1)

Current matching
 S(t)

Random Matching
 R(t)

22

Tassiulas’ algorithm: Use past sample

10 50

10

10
70

60

S(t-1)
W(S(t-1))=160

40
30

10

20

R(t)
W(R(t))=150

MAX

S(t)

23

Performance of Tassiulas’ algorithm

Theorem (Tassiulas 98): The above scheme is stable under any
admissible Bernoulli IID inputs.

24

Backlogs under Tassiulas’ algorithm

0.01

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Normalized Load

M
e
a
n

IQ

L
e
n
g
t
h

Tassiulas

MWM

25

10

10

10
70

60

S(t-1)

W(S(t-1))=160

50

40

30

10

20

R(t)
W(R(t))=150

Reducing backlogs: the Merge operation

 30 v/s 120

130 v/s 30

Merge

26

10

10

10
70

60

S(t-1)

W(S(t-1))=160

50

40

30

10

20

R(t)
W(R(t))=150

Reducing backlogs: the Merge operation

Merge

W(S(t)) = 250

27

Performance of Merge algorithm

Theorem (GPS): The Merge scheme is stable under any admissible
Bernoulli IID inputs.

28

Merge v/s Max

0.01

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Normalized Load

M
e

a
n

 I
Q

 L
e

n
g

th

Tassiulas
Merge
MWM

29

89
3

5

23

47

11
31

97

S(t-1)

W(S(t-1))=209

Use arrival information: Serena

2

7

The arrival graph

30

89
3

5

23

47

11
31

97

S(t-1)

W(S(t-1))=209

Use arrival information: Serena

2

The arrival graph

31

89
3

6

23

47

11
31

97

S(t-1)

23

W(S(t-1))=209

0

W=121

Use arrival information: Serena

Merge

W(S(t))=243

S(t)

89

3

23

31

97

32

Performance of Serena algorithm

Theorem (GPS): The Serena algorithm is stable under any admissible
Bernoulli IID inputs.

33

Backlogs under Serena

0.01

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Normalized Load

M
e
a
n

IQ

L
e
n
g
t
h

Tassiulas
Merge
Serena
MWM

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997.

Bandwidth partitioning

(jointly with R. Pan, C. Psounis, C. Nair, B. Yang)

35

The Setup

• A congested network with many users

• Problems:
– allocate bandwidth fairly
– control queue size and hence delay

36

Approach 1: Network-centric

• Network node: fair queueing
• User traffic: any type

 problem: complex implementation

37

Approach 2: User-centric

• Network node: simple FIFO
• User traffic: responsive to congestion (e.g. TCP)

 problem: requires user cooperation

• For example, if the red source blasts away, it will get all of the link’s
bandwidth

• Question: Can we prevent a single source (or a small number of sources)
from hogging up all the bandwidth, without explicitly identifying the rogue
source?

• We will deal with full-scale bandwidth partitioning later

38

A Randomized Algorithm: First Cut

• Consider a single link shared by 1 unresponsive (red) flow and k distinct
responsive (green) flows

• Suppose the buffer gets congested

• Observe: It is likely there are more packets from the red (unresponsive) source
• So if a randomly chosen packet is evicted, it will likely be a red packet
• Therefore, one algorithm could be:
 When buffer is congested evict a randomly chosen packet

39

Comments

• Unfortunately, this doesn’t work because there is a small non-zero chance
of evicting a green packet

• Since green sources are responsive, they interpret the packet drop as a
congestion signal and back-off

• This only frees up more room for red packets

40

Randomized algorithm: Second attempt

• Suppose we choose two packets at random from the queue and compare
their ids, then it is quite unlikely that both will be green

• This suggests another algorithm:
 Choose two packets at random and drop them both if their ids agree

• This works: That is, it limits the maximum bandwidth the red source can
consume

41

Simulation Comparison: The setup

R1
1Mbps

10Mbps
S(2)

S(m)

S(m+n)

TCP
Sources

S(m+1)

UDP
Sources

S(1)

R2

D(2)

D(m)

D(m+n)

TCP
Sinks

D(m+1)

UDP
Sinks

D(1)

10Mbps

42

1 UDP source and 32 TCP sources

0

200

400

600

800

1000

100 1000 10000

UDP Arrival Rate (Kbps)

U
D

P
 T

h
ro

u
g

h
p

u
t

(K
b

p
s
) RED

CHOKe

43

A Fluid Analysis

discards from the queue

permeable tube
with leakage

44

The Equation

N

tL

dt

tdL

N

tL
tttLtL

i

i

i

i

iii

)()(

)(
)()(

!

"!"

#==>

=+#

)21()(

);1()0(

iii

iii

pDL

pL

!=

!=

"

"

Boundary Conditions

!=
D

i
i

N

ttL
p

0

)("

45

Simulation Comparison: 1UDP, 32 TCPs

0

50

100

150

200

250

300

350

0.1 1 10

Arrival Rate

T
h

ro
u

g
h

p
u

t

fluid model

CHOKe ns simulation

46

Complete bandwidth partitioning

• We have just seen how to prevent a small number of sources from hogging
all the bandwidth

• However, this is far from ideal fairness
– but, approaching ideal bandwidth partitioning, seems very costly
– (recall the fair queueing algorithm)

47

Our approach: Exploit power laws

• Most flows are very small (mice), most bandwidth is consumed by a few large
(elephant) flows: simply partition the bandwidth amongst the elephant flows

• New problem: Quickly (automatically) identify elephant flows, allocate bandwidth to
them

48

Detecting large (elephant) flows

• Detection:
– Flip a coin with bias p (= 0.1, say) for heads on each arriving packet,

independently from packet to packet.
– A flow is “sampled” if one its packets has a head on it

• A flow of size X has roughly 0.1X chance of being sampled
– flows with fewer than 5 packets are sampled with prob 0.5
– flows with more than 10 packets are sampled with prob 1

• Most mice will not be sampled, most elephants will be

HHTTTT TT TT TT HH

!
!

49

The AFD Algorithm

Di

Data Buffer

Flow Table
(Elephant Trap)

• AFD is a randomized algorithm
– joint with Rong Pan, Flavio Bonomi, Lee Breslau, Bob Olsen and Scott Shenker

• Current implementation plans at Cisco; 5 platforms
– Apex-Chopper NPU based SPAs for GSR12000, and 7600
– Next generation MAC ASICs for 6500, and DC3
– Cat 3K wireless service cards

50

Conclusions

• Efficient network hardware design poses a lot of interesting algorithmic
problems, mainly because of very tight constraints

• Simple algorithms are needed

• We’ve seen that randomization and power laws can be exploited

