Randomized Network Algorithms:
An Overview and Recent Results

Balaji Prabhakar
Departments of EE and CS
Stanford University

Network algorithms

Algorithms implemented in networks, e.g. in

— switches/routers
scheduling algorithms
routing lookup
packet classification
security

— memory/buffer managers
maintaining statistics
active queue management
bandwidth partitioning

— load balancers

— web caches
eviction schemes
placement of caches in a network

Network algorithms: challenges

® Time constraint: Need to make complicated decisions very quickly
— line speeds in the Internet core 10Gbps (40Gbps in the near future)
U i.e. packets arrive roughly every 40ns
— large number of
U distinct flows in the Internet core
U requests arriving per sec at large server farms

® But, there are limited computational resources
— due to rigid space and heat dissipation constraints

® Algorithms need to be very simple so as to be implementable
— but simple algorithms may perform poorly, if not well-designed

IP Routers

6ft

|

YT

| Capacity: 160Gb/s

Power: 4.2kW

2ft

Cisco GSR 12416

3ft

|l capacity: 80Gb/s
Power: 2.6kW

Juniper M160

A Detailed Sketch

Output
. Scheduler
Interconnection
Lookup Fabric |
Engine .
- Packet >
Buffers : —
Network Switch
Processor
Lookup
Engme Packet
Buffers - 1
Network —] >
Processor
Lookup
Engine
N Packet —
—_ 1 >
Network Buffers
Processor

Line cards Outputs

Designing network algorithms

® [willillustrate the use of two ideas for designing efficient network algorithms

1. Randomization

Q base decisions upon a small, randomly chosen sample of the state/input, instead of the
complete state/input

2. Power law distributions

Q Internet packet traces exhibit power law distributions:
80% of the packets belong to 20% of the flows;
i.e. most flows are small (mice), most work is brought by a few elephants
Q identifying the large flows cheaply can significantly simplify the implementation

® Two applications
— switch scheduling
— bandwidth partitioning

Randomization: An illustrative example

Find the youngest person from a population of 1 billion

Deterministic algorithm: linear search
— has a complexity of 1 billion

A randomized version: find the youngest of 30 randomly chosen people
— has a complexity of 30

Performance
— linear search will find the absolute youngest person (rank = 1)
— if Ris the person found by randomized algorithm, we can say

9 \ 30
P(R has rank < 100 million) > 1 — (E) ~ 0.95

» thus, we can say that the performance of the randomized algorithm is good with a high
probability

Randomizing iterative schemes

®* Often, we want to perform some operation iteratively
® Example: find the youngest person each year

® Say in 2007 you choose 30 people at random
— and store the identity of the youngest person in memory
— in 2008 you choose 29 new people at random
— let R be the youngest person from these 29 + 1 = 30 people

g \ 23
P(R has rank < 100 million) > 1 — <ﬁ)

— or

9\ 30
P(R has rank < 50 million) > 1 — (E)

Randomized switch scheduling algorithms

joint work with Paolo Giaccone and Devavrat Shah

A Detailed Sketch

Lookup
Engine
- Packet
Buffers
Network
Processor
Lookup
Engme Packet
Buffers
Network
Processor
Lookup
Engine
- Packet
Network Buffers
Processor
Line cards

Interconnection
Fabric

Switch

Output
Scheduler

Outputs

10

Input queued switch

Crossbar fabric
B 1 K
T __ M2
| K]
1 2 3
\ 4

® Crossbar constraints

— each input can connect to at most one output
— each output can connect to at most one input

11

Switch scheduling

Crossbar fabric
|] |
—e-1 &
T __ M2
3 ——
1 2 3
v

® Crossbar constraints

— each input can connect to at most one output
— each output can connect to at most one input

12

Switch scheduling

Crossbar fabric
W1 Ix
T ___ M2
3 ——
1 2 3
\ 4

® Crossbar constraints

— each input can connect to at most one output
— each output can connect to at most one input

13

Switch scheduling

Crossbar fabric
—m1 4
T ___ M2
3 ——
1 2 3
- A4

® Crossbar constraints

— each input can connect to at most one output
— each output can connect to at most one input

14

Performance measures

® Throughput

— an algorithm is stable (or delivers 100% throughput) if for any
admissible arrival, the average backlog is bounded.

® Average delay or average backlog (queue-size)

15

Scheduling: Bipartite graph matching

Schedule or Matching

16

Scheduling algorithms

/N

o ° o—13 o
O J
19 5
O 0 18
1
0 ® O 0
O ®
: 7 :
Practical Max Wt Matching
Maximal Matchings Max Size Matching
-> Stable
- Not stable - Not stable (Tassiulas-Ephremides 92,
(McKeown-Ananthram-Walrand 96) McKeown et. al. 96,

Dai-Prabhakar 00)
17

The Maximum Weight Matching Algorithm

MWM: performance
— throughput: stable (Tassiulas-Ephremides 92; McKeown et al 96; Dai-Prabhakar 00)
— backlogs: very low on average (Leonardi et al 01; Shah-Kopikare 02)

MWM: implementation
— has cubic worst-case complexity
(approx. 27,000 iterations for a 30-port switch)
— MWM algorithms involve backtracking:
i.e. edges laid down in one iteration may be removed in a subsequent iteration
» algorithm not amenable to pipelining

18

Switch algorithms

0 0 0 0 —19 o

19
O O O

1 18

O 9 O 9 O ¢

7
Maximal matching Max Size Matching Max Wt Matching

Not stable Not stable Stable and low backlogs

Better performance

Easier implementation

19

Randomized approximation to MWM

® Consider the following randomized approximation:

At every time
- sample d matchings independently and uniformly
- use the heaviest of these d matchings to schedule packets

® Ideally we would like to use a small value of d. However,...

Theorem. This algorithm is not stable even wlhen d = N. In fact,
when d = N, the throughput is at most 1 — — ~ 63%
(Giaccone-Prabhakar-Shah 02) §

20

Tassiulas’ algorithm

Next time

Previous matching
S(t-1) Random Matching
R(t)

MAX

Current matching
S(t)

21

Tassiulas’ algorithm: Use past sample

Com O+

S(t-1) R(t)
W(S(t-1))=160 W(R(t))=150

S(t)

22

Performance of Tassiulas’ algorithm

Theorem (Tassiulas 98): The above scheme is stable under any
admissible Bernoulli 1ID inputs.

23

Backlogs under Tassiulas’ algorithm

Mean IQ Length

10000
1000 Tassiulas
—a— MWM
100
10+
‘I |
0.1
0.01 w ! ! w
0 0.2 0.4 0.6 0.8

Normalized Load

24

Reducing backlogs: the Merge operation

s Qe e
5(t-1) R(t)
W(S(t-1))=160 W(R(t))=150

® o v/s

v/s

25

Reducing backlogs: the Merge operation

S(t-1)

W(S(t-1))=160

G

v
° ®
° °
[®
® ®
[®

W(S(t)) = 250

R(t)
W(R(t))=150

26

Performance of Merge algorithm

Theorem (GPS): The Merge scheme is stable under any admissible
Bernoulli 1ID inputs.

27

Merge v/s Max

Mean IQ Length

10000
1000
1001
10
‘I _

- Tassiulas
' Merge
—a— MWM
0-01 T T T T 1
0 0.2 0.4 0.6 0.8

Normalized Load

28

Use arrival information: Serena

° ® ¢ °

° ® ° »

® ® (o

° ® ° °

° ® ° °
S(t-1)

W(S(t-1))=209 The arrival graph

29

Use arrival information: Serena

° ® ° °

° ® ° ®

® ® (o

° ® ° °

° ® ° °
S(t-1)

W(S(t-1))=209 The arrival graph

30

Use arrival information: Serena

o P e 23
o o [)
o ® o
—
° ° @ o 0
o ®
S(t-1)
W=121
W(S(t-1))=209 . 23 .
89
[) 9
3
o ®
31
[] 9
97
[] 9
S(t)

W(S(t))=243

31

Performance of Serena algorithm

Theorem (GPS): The Serena algorithm is stable under any admissible
Bernoulli 1ID inputs.

32

Backlogs under Serena

Mean IQ Length

10000
1000+
100+
10+
‘I |
Tassiulas
0.1 Merge
Serena
—x—MWM
0.01 w w ! x |
0 0.2 0.4 0.6 0.8

Normalized Loac

33

Bandwidth partitioning

(jointly with R. Pan, C. Psounis, C. Nair, B. Yang)

The Setup

® A congested network with many users

® Problems:
— allocate bandwidth fairly
— control queue size and hence delay

35

Approach 1: Network-centric

®* Network node: fair queueing

® User traffic: any type
» problem: complex implementation

36

Approach 2: User-centric

Y

HHH= W

® Network node: simple FIFO
® User traffic: responsive to congestion (e.g. TCP)
» problem: requires user cooperation

® For example, if the red source blasts away, it will get all of the link’s
bandwidth

® Question: Can we prevent a single source (or a small number of sources)
from hogging up all the bandwidth, without explicitly identifying the rogue
source?

®* We will deal with full-scale bandwidth partitioning later
37

A Randomized Algorithm: First Cut

Consider a single link shared by 1 unresponsive (red) flow and k distinct
responsive (green) flows

Suppose the buffer gets congested

—

Observe: It is likely there are more packets from the red (unresponsive) source
So if a randomly chosen packet is evicted, it will likely be a red packet
Therefore, one algorithm could be:

When buffer is congested evict a randomly chosen packet

38

Comments

Unfortunately, this doesn’t work because there is a small non-zero chance
of evicting a green packet

Since green sources are responsive, they interpret the packet drop as a
congestion signal and back-off

This only frees up more room for red packets

39

Randomized algorithm: Second attempt

® Suppose we choose two packets at random from the queue and compare
their ids, then it is quite unlikely that both will be green

® This suggests another algorithm:
Choose two packets at random and drop them both if their ids agree

® This works: That is, it limits the maximum bandwidth the red source can
consume

40

Simulation Comparison: The setup

I

TCP
Sources

D(1)
10Mbps 10Mbps
@ TCP
: jnks

1Mbps

UDP
Sinks

R1 R2

i

UDP .
Sources °

S(m+n) D(m+n) /

41

1 UDP source and 32 TCP sources

UDP Throughput (Kbps)

1000

800

600

400

200

—+RED

—— CHOKe

100

UDP Arrival Rate (Kbps)

1000

10000

42

A Fluid Analysis

RN

v v
discards from the queue

permeable tube
with leakage

43

The Equation

L(t)— L, (t +61) = A0t 2D

N
AL __, L
dt N
Boundary Conditions

L.(0)=A(1-p,);

. _fL (2)ot
Li(D) =)\’i(1_2pi)

44

Simulation Comparison: 1UDP, 32 TCPs

L |
~ 100 —— fluid model
50 —+ CHOKe ns simulation Ny
0 \
0.1 1 10

Arrival Rate

45

Complete bandwidth partitioning

® We have just seen how to prevent a small number of sources from hogging
all the bandwidth

® However, this is far from ideal fairness
— but, approaching ideal bandwidth partitioning, seems very costly
— (recall the fair queueing algorithm)

46

Our approach: Exploit power laws

® Most flows are very small (mice), most bandwidth is consumed by a few large
(elephant) flows: simply partition the bandwidth amongst the elephant flows

0.8

0.6 YA
Y
04 7 '
A
/ .!:
7 ,/’
0.2 e

ety

0 ridai " " " " "
1e-06 1e-05 0.0001 0.001 0.01 0.1 1
Fraction of 1-Second Rates

Cumulative Fraction of Bytes

®* New problem: Quickly (automatically) identify elephant flows, allocate bandwidth to
them

47

Detecting large (elephant) flows

Detection:

— Flip a coin with bias p (= 0.1, say) for heads on each arriving packet,
independently from packet to packet.

— Aflow is “sampled” if one its packets has a head on it

A flow of size X has roughly 0.1X chance of being sampled

— flows with fewer than 5 packets are sampled with prob 0.5
— flows with more than 10 packets are sampled with prob : 1
Most mice will not be sampled, most elephants will be -

N

48

The AFD Algorithm

Data Buffer

—> D.

1

— AN

!

Flow Table
(Elephant Trap)

® AFD is a randomized algorithm
— joint with Rong Pan, Flavio Bonomi, Lee Breslau, Bob Olsen and Scott Shenker

® Current implementation plans at Cisco; 5 platforms

— Apex-Chopper NPU based SPAs for GSR12000, and 7600
— Next generation MAC ASICs for 6500, and DC3

— (Cat 3K wireless service cards

49

Conclusions

Efficient network hardware design poses a lot of interesting algorithmic
problems, mainly because of very tight constraints

Simple algorithms are needed

We've seen that randomization and power laws can be exploited

50

