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Network algorithms

• Algorithms implemented in networks, e.g. in

– switches/routers
       scheduling algorithms
       routing lookup
       packet classification
       security

– memory/buffer managers
       maintaining statistics
       active queue management
       bandwidth partitioning

– load balancers

– web caches
       eviction schemes
       placement of caches in a network
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Network algorithms: challenges

• Time constraint: Need to make complicated decisions very quickly
– line speeds in the Internet core 10Gbps (40Gbps in the near future)

 i.e. packets arrive roughly every 40ns
– large number of

 distinct flows in the Internet core
 requests arriving per sec at large server farms

• But, there are limited computational resources
– due to rigid space and heat dissipation constraints

• Algorithms need to be very simple so as to be implementable
– but simple algorithms may perform poorly, if not well-designed
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A Detailed Sketch
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Designing network algorithms

• I will illustrate the use of two ideas for designing efficient network algorithms

1.  Randomization

 base decisions upon a small, randomly chosen sample of the state/input, instead of the
complete state/input

2.  Power law distributions

 Internet packet traces exhibit power law distributions:
     80% of the packets belong to 20% of the flows;
     i.e. most flows are small (mice), most work is brought by a few elephants
 identifying the large flows cheaply can significantly simplify the implementation

• Two applications
– switch scheduling
– bandwidth partitioning
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Randomization: An illustrative example

• Find the youngest person from a population of 1 billion

• Deterministic algorithm: linear search
– has a complexity of 1 billion

• A randomized version: find the youngest of 30 randomly chosen people
– has a complexity of 30

• Performance
– linear search will find the absolute youngest person (rank = 1)
– if R is the person found by randomized algorithm, we can say

 thus, we can say that the performance of the randomized algorithm is good with a high
probability
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Randomizing iterative schemes

• Often, we want to perform some operation iteratively

• Example: find the youngest person each year

• Say in 2007 you choose 30 people at random
– and store the identity of the youngest person in memory
– in 2008 you choose 29 new people at random
– let R be the youngest person from these 29 + 1 = 30 people

– or
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Randomized switch scheduling algorithms

joint work with Paolo Giaccone and Devavrat Shah
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Input queued switch

• Crossbar constraints
– each input can connect to at most one output
– each output can connect to at most one input

Crossbar fabric
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Switch scheduling
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Switch scheduling
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Performance measures

• Throughput

– an algorithm is stable  (or delivers 100% throughput)  if for any
admissible arrival, the average backlog is bounded.

• Average delay or average backlog (queue-size)
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Scheduling: Bipartite graph matching

19
34 21

18

7

1

Schedule or Matching



17

Scheduling algorithms

   Not stable 
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The Maximum Weight Matching Algorithm

• MWM: performance
– throughput: stable  (Tassiulas-Ephremides 92; McKeown et al 96; Dai-Prabhakar 00)

– backlogs: very low on average  (Leonardi et al 01; Shah-Kopikare 02)

• MWM: implementation
– has cubic worst-case complexity
    (approx. 27,000 iterations for a 30-port switch)
– MWM algorithms involve backtracking:
    i.e. edges laid down in one iteration may be removed in a subsequent iteration
 algorithm not amenable to pipelining
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Switch algorithms
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Randomized approximation to MWM

• Consider the following randomized approximation:
At every time
     - sample d matchings independently and uniformly
     - use the heaviest of these d matchings to schedule packets

• Ideally we would like to use a small value of d.  However,…

Theorem. This algorithm is not stable even when d = N.  In fact,
  when d = N, the throughput is at most
  (Giaccone-Prabhakar-Shah 02)
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Tassiulas’ algorithm

Next time        MAX

Previous matching
            S(t-1)

Current matching
            S(t)

Random Matching
             R(t)
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Tassiulas’ algorithm: Use past sample
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Performance of Tassiulas’ algorithm

Theorem (Tassiulas 98): The above scheme is stable under any
admissible Bernoulli IID inputs.
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Backlogs under Tassiulas’ algorithm
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Performance of Merge algorithm

Theorem (GPS): The Merge scheme is stable under any admissible
Bernoulli IID inputs.
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Merge v/s Max
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Performance of Serena algorithm

Theorem (GPS): The Serena algorithm is stable under any admissible
Bernoulli IID inputs.
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Backlogs under Serena
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High Performance
Switching and Routing
Telecom Center Workshop:  Sept 4, 1997. 

Bandwidth partitioning

(jointly with R. Pan, C. Psounis, C. Nair, B. Yang)
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The Setup

• A congested network with many users

• Problems:
– allocate bandwidth fairly
– control queue size and hence delay



36

Approach 1: Network-centric

• Network node: fair queueing
•  User traffic: any type

 problem: complex implementation
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Approach 2: User-centric

• Network node: simple FIFO
• User traffic: responsive to congestion (e.g. TCP)

 problem: requires user cooperation

• For example, if the red source blasts away, it will get all of the link’s
bandwidth

• Question: Can we prevent a single source (or a small number of sources)
from hogging up all the bandwidth, without explicitly identifying the rogue
source?

• We will deal with full-scale bandwidth partitioning later
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A Randomized Algorithm: First Cut

• Consider a single link shared by 1 unresponsive (red) flow and k distinct
responsive (green) flows

• Suppose the buffer gets congested

• Observe: It is likely there are more packets from the red (unresponsive) source
• So if a randomly chosen packet is evicted, it will likely be a red packet
• Therefore, one algorithm could be:
     When buffer is congested evict a randomly chosen packet
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Comments

• Unfortunately, this doesn’t work because there is a small non-zero chance
of evicting a green packet

• Since green sources are responsive, they interpret the packet drop as a
congestion signal and back-off

• This only frees up more room for red packets
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Randomized algorithm: Second attempt

• Suppose we choose two packets at random from the queue and compare
their ids, then it is quite unlikely that both will be green

• This suggests another algorithm:
    Choose two packets at random and drop them both if their ids agree

• This works: That is, it limits the maximum bandwidth the red source can
consume
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Simulation Comparison: The setup
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1 UDP source and 32 TCP sources
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A Fluid Analysis
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The Equation
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Simulation Comparison: 1UDP, 32 TCPs
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Complete bandwidth partitioning

• We have just seen how to prevent a small number of sources from hogging
all the bandwidth

• However, this is far from ideal fairness
– but, approaching ideal bandwidth partitioning, seems very costly
– (recall the fair queueing algorithm)
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Our approach: Exploit power laws

• Most flows are very small (mice), most bandwidth is consumed by a few large
(elephant) flows: simply partition the bandwidth amongst the elephant flows

• New problem: Quickly (automatically) identify elephant flows, allocate bandwidth to
them
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Detecting large (elephant) flows

• Detection:
– Flip a coin with bias p (= 0.1, say) for heads on each arriving packet,

independently from packet to packet.
– A flow is “sampled” if one its packets has a head on it

• A flow of size X  has roughly 0.1X chance of being sampled
– flows with fewer than 5 packets are sampled with prob       0.5
– flows with more than 10 packets are sampled with prob      1

• Most mice will not be sampled, most elephants will be

HHTTTT TT TT TT HH

!
!
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The AFD Algorithm
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• AFD is a randomized algorithm
– joint with Rong Pan, Flavio Bonomi, Lee Breslau, Bob Olsen and Scott Shenker

• Current implementation plans at Cisco; 5 platforms
– Apex-Chopper NPU based SPAs for GSR12000, and 7600
– Next generation MAC ASICs for 6500, and DC3
– Cat 3K wireless service cards
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Conclusions

• Efficient network hardware design poses a lot of interesting algorithmic
problems, mainly because of very tight constraints

• Simple algorithms are needed

• We’ve seen that randomization and power laws can be exploited


