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Basic Components and Concepts
a deterministic, static, one-stage, non-cooperative game

e a finite set of selfish players, who compete non-cooperatively for
optimal individual well-being

e a set of strategies for each player, that is generally dependent of
rivals’ strategies

e an objective for each player, dependent on rivals' strategies

e an optimal response set given rivals’ plays

e 2 guiding principle of an equilibrium, i.e., a solution, of the game

e there is no leading player; but system welfare is of concern.
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The Mathematical Setting

N number of players
N ‘ '
xr = (acz) 1 a vector tuple of strategies, x* for player 1
1=
:c_i = (:c~7> i a vector tuple of all players’ strategies, except player 2
J 1

0;(x) player i's objective, a function all players’ strategies

Xi(:v_i) C T player i's strategy set dependent on rivals’ strategy =~

Anticipating rivals’' strategies x— %, player ¢ solves

minimize  0,(z*, %)
aj'l,

subject to ' € X'(z™%)

Player i's optimal response set: Ri(z~%) = argmin 6,(z", 27 ").
e Xt(z—)
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Definition of a Nash equilibrium

.\ NV
A tuple z = (') is a Nash equilibrium if,
for all i=1,--- N, 2t € RY(z7), i.e., z* € XYz
and

0;(z',27%) < 0;(a%,27Y), Va' € X'z ).

In words, a Nash equilibrium is a tuple of strategies, one for each player, such
that no player has an incentive to unilaterally deviate from her designated
strategy if the rivals play theirs.

Some immediate questions:

e Existence, multiciplicity, characterization, computation, and sensitivity?

e Can players be better off if they collude, i.e., form bargaining groups?

e Can players be given incentives to optimize system well-being while behaving
selfishly?



Affine Games

e cach 6;(x) is quadratic:

H(xi,a:_i) — %(xz )TAZZ:EZ + (:UZ )T

Z AW gd —+ ai]
JF
with A% symmetric; and AY = AJ' for ¢ # j;

e cach X*(z™%) is polyhedral given by
. . n o . . .
Xz(xZ)Z{a:ZE%Z_@ ; ZB”Q@J—I—bZEO};

j=1
note the dependence of BY on (i,75);

e extending a bimatrix (i.e., 2-person matrix) game, wherein N = 2,
(A1 1) =0, (422,42) = 0, and X1(22) and X2(z!) are both
unit simplices (i.e., strategies are probability vectors).



A Linear Complementarity Formulation

By linear programming duality, z* € R*(z~*) if and only if \* exists
such that (the L notation denotes complementarity slackness),

N
0 <zt L at+ Y AY2) —(B")I'N >0
j=1

0 <A L b4 Y BYa) > 0;

concatenation yields an LCP in the variables (azﬂ)@)i_l.

Note that for each i, only B% appears in the first complementarity
condition, whereas B% for all j appear in the second.



An Illustration for N =2
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e [ here is no connection to a single quadratic program, let alone
a convex one.

e [ here is presently no algorithm that is capable of processing
this LCP in finite time.

e A major difficulty is due to the two off-diagonal blocks.



Common Coupled Constraints
[B't B'?] = [B?! B*)] and b' =b* =1

Is the game equivalent to the condensed LCP:
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In general, every solution to the condensed LCP is a Nash equi-
librium, but the converse is not necessarily true.

Example. Consider a 2-person game with a common coupled constraint:

minimize Hl(xl,xg) = %(331 —+ x> — 1)2 | minimize 91(331,332) = %(:131 —+ x5 —2):

I T2

subject to z1 4+ 22 < 1 | subject to z14z2 < 1



The equivalent LCP:

—14+z14+22+ M
—2+4 1+ 22+ A2
l—21—x 1 X1 >0
0] 1 —x21— 2 1 X >0
has solutions (x1,x2,A1,A2) = (a,1 — «,0,1) all of which are Nash equilibria;

0
o)
0

IAIA

whereas the condensed LCP:
O=-14z14+2x220+ X
O = -24xz14+x2+ X\
0<1—z1—x2 1 Ax>0

obviously has no solution.

Thus, Nash equilibria exist, but no common multipliers to the common cou-
pled constraint exist!

Solution of the condensed LCP by Lemke's complementary pivot algorithm
has been studied by Eaves (1973).
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Equivalent Formulations

e fixed-point: |z € R (z %) |foralli=1,--- N
— fully equivalent in general

e generalized quasi-variational inequality (GQVI):

T = <§Z>5V:1 € X(z) and for some a' € 0,:0;(%),
N
S (2l —7)Tal > 0, Vo = (2), € X(@)
=1
N
where X (z) = HXi(E_") is a moving set and
=1

0:0;(Z) = {a* € R : 0i(«’,727") — 0:(T) > (a' —7)Ta’ Va' € R} is the sub-
differential of 0;(e,z~*) with respect to z* at z*

e = is a Nash equilibrium if and only if z is a solution to the GQVI, provided
that 0;(e,z7%) and X(z~*) are both convex for all 3.
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A Standard VI under ‘“Joint Convexity”

Let | X ={x:z € X(x)}| be the set of fixed-points of the set-valued map X.

A substitution assumption. Suppose that for every x € X and every i # j,

' e XW(z™) = 7 € XI(z7),
where 277 is the vector whose k-component is z* for k£ # i and equals to !
for kK = 1.

e Under the substitution assumption, every solution to the generalized VI:

7= (’x\l)jvzl c X and for some a' € 0,:0;,(2),

N
Z(aji—ffi)Tai > 0, Vo = (ajz>;N:1 e X
1=1

is a solution to the GQVI; but not conversely; counterexample is provided by
the previous 2-person generalized game with a common coupled constraint.
12



e Analysis of VIs typically requires the convexity of the defin-
ing set, which amounts to the "“joint convexity’” of the players’
strategies.

e Facchinei-Kanzow (2007) coined the term ‘“variational equilib-
rium” to mean a solution of the GVL

e [ he difference between the GQVI and the GVI is the moving
set X (z) in the former versus the stationary set X in the latter.
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Yet Another Equivalent Formulations (cont.)

e Karush-Kuhn-Tucker conditions: assume
Xi(z™) = {z' € R : ¢z, 27" < 0},

N
where ¢ : R* — R™, where n = E n;.
Jj=1

The KKT conditions of player ¢2's optimization problem:

m;o .
0 = in 92(33) + Z )\}2 VCL,@' gfc(a:)
k=1
0 < —g'(z) L X > 0;
concatenation vields a mixed nonlinear complementarity problem

. AN
in the variables (xZ,AZ>i_1.

Note: differentiability is needed of all functions.
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KKT Formulation and Nash Equilibrium

e Every MNCP solution is a Nash equilibrium, provided that each
0;(e,27) is convex and so is gi(e,z27%) for all k=1, - ,m,.

e Conversely, a Nash equilibrium is an MNCP solution under
standard constraint qualifications in nonlinear programming, such

as that of Mangasarian-Fromovitz.

e The classical case treated by Rosen (1965) assumed ¢* = g for
all 2, where each component function g, is convex, and certain
proportionality condition on the players’ multipliers A}; for the
(common) constraints.
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The regularized Nikaido-Isoda function

For an arbitrary scalar ¢ > O, define the bivariate function: for x = (azl)N

._, and
y = (y),_, both in X,
N . . . . c . , . ,
belw) = 3 0y ) — 0t ) + 2 (5 =2 (g - |

The regularized Nikaido-Isoda function is the value function:

xe(z) = min ¢.(z,y)|, Vx € X.
yeX (x)
Clearly,
al C
A(x) = min [Qi i,:c_i + = (¢ — )T (¢ — 2 }—97;:6 }
o) ;{X() W)+ S - ) - )| - o)
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Optimization Formulation

Proposition. Assume that X'(z7") is closed convex and 6;(e,z7") is convex
for every ¢+ and every x='. For any scalar ¢ > 0,

(a) xe(x) is a well-defined nonpositive function on the set X

(b) 7z is a Nash equilibrium if and only if |z € argmax x.(x) and x.(z) =0
reX

(c) for every x € X, a unique y(z) = (y'(z))Y; € X(x) exists such that
Xe(x) = ¢z, y(x));

In particular, a vector x € X satisfying |x.(x)| < e for some ¢ > 0 can be
considered an inexact Nash equilibrium.

e In general, x.(x) is not a friendly function to be maximized.

e Furthermore, the maximization problem is non-concave; yvet Krawczyk-
Uryasev have developed a ‘“relaxation algorithm” and shown convergence
under a certain “uniform positive definiteness’” condition.
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Existence of a Nash equilibrium

The Abstract Case A Nash equilibrium exists if

e cach set-valued map X' is continuous,

e compact convex sets K exist such that for every r~te K°,
Xt(x™%) is a nonempty closed convex subset of K* and 6;(e,z7%)
IS convex.

The Jointly Convex Case A Nash equilibrium exists if

o the set X = {z: 2' € X"(z*) Vi} is compact convex,

e the substitution assumption holds

e cach 6;(e, %) is convex and continuously differentiable.

Both results extend the classical Nash existence theorem where
each X*(z™*) is a constant convex compact set.

18



A Degree-Theoretic Existence Result

Consider the cone complementarity problem (CCP):
C >z L F(z) € C¥,
where C is a closed convex cone in "™ and
C*={yeR":ylz >0 VzeC}

is the dual cone of C.

Theorem (Facchinei-Pang) If F' is continuous and

sup sup{ ||z || : = satisfies C 2 2 L F(z)+ 72z € C*} < oo,
7>0

then the CCP has a solution.

By far the most widely applicable in the absence of boundedness.
19



Multi-Leader Follower Games

Stackelberg-Nash game (1952)
There are N Nash players whose strategy sets and objective
functions are parameterized by a leader’s variable z. The leader

chooses z to optimize a performance measure, leading to a

Mathematical Program with Equilibrium Constraints

minimize Uv(x, 2)

subject to (x,z) € Z
and xr € NE(2)

Solution existence depends on the closedness of the Nash equilibrium map.
20



More on the Stackelberg-Nash game

Nonlinear program with complementarity constraints

minimize Y (xz, 2)

T,2,\
subject to (z,2z) € Z
and foralle:=1,--- N

mip o .

0 =V_ibi(z,2) + > A.V_igi(z,z2)
k=1

0 < —g(z,z) LA >0

e Disjunctive, nonconvex, non-standard first-order optimality conditions

e Albeit no certificate of optimality, NEOS solvers handle complementarity
constraints effectively

e Recent study of global solution in the all-affine case.
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Multi-Leader Follower Games (cont.)

There are M leaders competing at an upper level, whose strate-

gies z = (2¥)™_, induce a set-valued response NE(z) from N
lower-level Nash players.

The overall model is to determine a Nash equilibrium z for the
leaders, each of whose optimization problem is an MPEC result-

ing from a Stackelberg game parameterized by the rival leaders’
strategies.

Open challenge: Introduce a sensible notion of
an equilibrium solution and establish its existence
under a non-trivial set of realistic conditions.
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More extensions

e Nash games under uncertainty: each player solves a stochastic pro-
gram with recourse (Giirkan-Ozge-Robinson 1999; Giirkan-Pang 2007)

e Differential Nash games: each player solves an optimal control problem
with a differential state equation and constraints on control:

minimize 0;(x,u)
xt u

subject to for almost all t € [0, T],
z'(t) = g"(t, 2" (t), u'(t))
{ ui(t) € U' C R4, }
and z4(0) = 0
Leading to a differential variational inequality in the differential
variables (x,\) and algebraic variable u, where X is the adjoint

variable of the players’ ODEs.
23



Concluding Remarks

We have

e introduced the Nash equilibrium

e presented several equivalent formulations

e given some existence theorems, and

e briefly mentioned several extensions.

e Many topics are omitted.
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The classical Arrow-Debreu abstract economy

e [ here are Y commodities, m producers, and n consumers.

e Producers maximize their profits equal to revenues Iess costs subject to
production constraints described by the production set Y7 C R,

e Consumers maximize their utilities subject to budget and consumption con-
straints described by the consumption set X* C ™,

e A market clearing mechanism ensures market efficiency; i.e., price of a
commodity is positive only if production is equal to consumption.

Model variables

pr: k=1,---,¢ commodity prices
y, - k=1,--- .4, 5=1,---,m, production quantities
a:}c ck=1,---,¢,1=1,---,n, consumption quantities

Model constants

aﬁ€ ck=1,--- ¢, ¢+ =1,---,n, consumers’ initial endowments of commodities

[
\'l—‘

o - g=1,---,m, ¢ - ,n, consumers’ shares of producers’ revenues

27



Producer’'s problem: taking the price p as exogenously given,

maximize ply’ — c;j(y?)
yjey.j

Consumer: taking the price p and consumptions y’ as exogenously given,

maximize  wu;(z?)

m
subject to pla’ < pla’ + Zaij p'y’
j=1

Market clearing: with z* and y’/ taken as exogenously given,

n m
maximize p’ g (' —a') — g y’
p=>0 : :
1=1 =1

¢
(prices can be normalized: Zpk = 1, if there are no production costs)
k=1

28



Variations of the basic model abound; for example,

® consumers, instead of selfishly optimizing their individual utilities, may de-
termine their consumptions by jointly optimizing their total utilities by solving

n
maximize Z wi ()
i—1

subject to for all i = 1,---,n
bt e X°
m
plat < pla’ + Zaij Py’
j=1

® alternatively, the market clearing mechanism may determine the price by
maximizing a social welfare function, subject to the selfish behavior of the

producers and consumers;

e yvet a third variation is that the price could be determined by an econometric

or market model and is a function of consumer consumptions.
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Multiuser communication systems: characteristics

e m users connected to a service provider via frequency-selective channels
e user lines are bundled, causing interferences
e total bandwidth divided into n frequency tones, shared by all users

e cach user allocates transmission power to all tones subject to: power budget
(min) and achievable information rate (max)

e Mmajor channel impediment: crosstalk interference at each tone.

Notation
pﬁC >0 user 's power spectrum allocated to tone k
a,i >0 background noise of user ¢'s loop at tone k

afj >0 crosstalk of frequency tone k£ between users ¢ and 5 with oz? >0
Pt >0 useri's total power

L; >0 user i's target achievable rate

30



Information rate: logarithm of signal to noise ratios, summed over tones

1 Zn: ( ol pt \
Ri(p~,---,p") = log | 1+ — — |, for user 1.
| = T+ X ol
\ ji )

Important consideration: user z can only estimate the rivals’

interferences, i.e., the sum ) o/ p), and has no knowledge of
Eal
the individual summands.

T herefore, interested in a distributed algorithm that requires

minimal user coordination, although a benchmark algorithm would
be useful too.
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Model I: rate maximization with budget constraint
Yu, Ginis, and Cioffi (2002)

Anticipating noises and interferences, user i, selfishly maximizes
information rate subject to power budget; i.e., given p~* = (p])j#i,

maximize R;(p',p~%)
pZ
subject to p! > 0, k= 1,---,n
n . .
and > pp = Phax
k=1

A Nash equilibrium is a tuple p = (p*)"2; such that

p' € argmax of user i's problem given pJ for j # i
foreach ¢+ =1,--- ,m.
32



Model II: power minimization with rate constraint
ensuring quality of service

Anticipating noises and interferences, user i, selfishly minimizes
power budget to ensure achievable rate; i.e., given p~* = (pj)];&z,

minimize Y p}

pZ
subject to p! >0, k =1,---,n
and R,(p',p™") > L;.

A Nash equilibrium is similarly defined.

Model I: partitioned constraints, given P&,
Model II: joint constraints, given L.
33



T he Karush-Kuhn-Tucker conditions

Model I: as a linear complementarity problem

0 <p, L o+ Zagp‘zﬂ—a?vi > 0

1=1

n
0 < v pr]gzpr%]ax
k=1

Model II: as a nonlinear complementarity problem

0] <p'§C L ali—l— Zozszi—oz%)\i > 0




EXistence of solutions: Model 1

(Luo-Pang 2006): Computable by the finite Lemke algorithm,
an equilibrium exists for all a;’g > 0 with o}/ > 0 and all o, > 0,

albeit not necessarily unique. [l

The tone matrices: M = [oz ]] i1 k=1--- n.

The normalized max-interference matrix

Cq 12 . alm
max max
21 1 ... g2m
max max
B = :
2
5max max C 1 i
where = max o/’] all i .
5max 1<k<n / 7 J

35



Solution uniqueness: Model 1

(Luo-Pang 2006) Nash equilibrium is unique if either
e cach tone matrix M, is positive definite, or

e B is an H-matrix;

e most generally, if ,max. > > o pipg, > 0, forall (pz)znzl =+ 0.
SIS p—1 j=1

Many equivalent descriptions of an H-matrix, e.g.,
e Diag(B)loff-Diag(B) has spectral radius less than 1, or
e Diag(B) — off-Diag(B) has positive principal minors, or

e B is strictly (quasi-)diagonally dominant; e.g., max E B,?{ax < 1.
1<ism £
71
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EXistence of solutions: Model 11

Definition. A power tuple p = (p*)™ , is a noiseless equilibrium if

v; > 0 exists such that

NEy: 0<p. L Z oz?p‘;g—a?vi > 0.
J=1
T he noiseless asymptotical cone:
NEQL) = {q e N&y \ {0} :

(@7
S log| 1+ kfj’fj <Lji=1,--,mb.
k=1 Z Qr dj
\ ) )
Main result. An equilibrium exists for all o% > 0 if NEo(L) = 0.
— Proof by a degree-theoretic argument.
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A matrix criterion

Define the nonnegative matrix Zmax:

1 (eLl — 1)6max (eLl — l)ﬁmax
(eLQ—l)ﬁmax 1 (eLQ—l)ﬁmax
(eLm—l)ﬁmax (eLm_l)ﬁmax 1 ]

Corollary. An equilibrium exists for all a,i > 0 if Zmax IS an
H-matrix. In particular, this holds if

7

X = 1— _max {(8 Z—1)z:5max

1<i<m
JF1

ensuring strict diagonal dominance of Zmax.

Unigueness can be established under a more restrictive condition.
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Comparisons of results

Model 1 Model II
power budget restriction ® quality of service
partitioned constraints ® joint constraints
essentially a linear problem ® a nonlinear problem
existence independent of crosstalk ® ecxistence dependent on crosstalk
coefficients and power budgets coefficients and achievable rates
solvable by a finite algorithm ® no finite algorithm is known
uniqueness independent of noises ® uniqueness dependent on ratios

of noises

admits a single optimization ® Nno such formulation is known
formulation with symmetric crosstalk
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Emissions Permit Allocation in Electric Markets

e Pollutant emission cap-and-trade systems existed since the 1990 Clean Act
Amendments for SO» in the US, and later for NO, and mercury.

e Recent emissions trading systems for greenhouse gas CO» by the European
Union, which are expected to have much larger economic impacts with the
potential of distorting market efficiency.

e Study the long-run effect of CO» permit allocation schemes on market effi-
ciency, including generator investment and operation decisions and consumer
prices, using complementarity modeling.

e Alternative emissions allocation rules: mixtures of
— grandfathering: initial allocation based on historical benchmark

— contingent allocation: depending on future input and output decisions.
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Characteristics of model

Allowing minimum output constraints

Capacity markets in addition to energy markets

Arbitrary temporal price-sensitive demand distribution

Price-taking and/or price-participating firms

Endogenous allocation allowances

Some refinements are straightforward.
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Notations

Parameters: all nonnegative

:F'

T
CAP;
MC;

Set of firms
Set of time periods ={1,---,T}
Minimal amount of energy that firm f has to generate (MW)

Marginal cost for firm f, excluding cost of emission
allowances (EURO/MWh)

Emission rate for firm f (tons/MWh)

Annualized investment cost of firm f's capacity (EURO/MWyr)
Fraction of emission allowance for firm f # 1,

normalized with respect to firm 1

Proportion of sales-based emission allowance for firm f

Total capacity requirement (MW)

Time converter (hr/yr)

Total emission allowances supply (tons/yr): E > Egp

Amount of emission allowances grandfathered (tons/yr)

Unit converter = 1 MW? yr/EURO
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Functions:

di(+) Demand function, strictly monotonically decreasing (MW)
de(+) The inverse of d;(-); (EURO/MWh)

enp(:) Nonpower emission, nonincreasing (tons/yr)
Variables:

Dy Energy price during period t (EURO/MWh): function of

total sales ngt
geF

pe Emission allowance price (EURO/ton)

pcap Capacity price(EURO/MWyr)

o Emission allowance for firm f (tons/MWyr)

Sft Energy sold by firm f in period ¢t (MW)

S ft = sy — CAP; (MW)

caps Capacity for firm f (MW)

L ft Dual variable associated with firm f's capacity constraint

in period ¢t (EURO/MWyr)
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Firm f’s profit maximization problem

Anticipating prices p;" and pe* and rival firms' capy for all g = f,

maximize
capy, (sf)ieT

subject to

and

Z Ht(p;fk — MCft _pe*Ef)Sft + (pe*of]kc — Ff)Can
teT

CAPf < S ft < capy, vVt € T

capy + Z capy > CAP a common joint constraint

geF
g7#=f

When firms exert market power, firm’s revenue from energy sales

becomes

> Hisppt (Z Sgt) :
teT geF
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Emission and capacity markets

Allowance price is positive only when demands for allowances
equal supplies:

0 < pe L enp(pe) — (E > HtEgSgt> >0

geF teT

Capacity price is positive only when demands for capacity equal
available capacity:

0 < pcap L ) cap;— CAP > 0|,
ferF

implying common multipliers for joint capacity constraint.
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Market clearing conditions and emission rules

e Supplies balancing demands: » sp = dy(p;), forall t € T

fer
e Balance of emissions allowances: Z of}capf = FE — Egp.
feF
Oé*
Input-based rule: —f = Ry >0, for all f € F,;
(@8
1
> HiEfsp
An output-based rule: afcapy = teT (E — Egp);
Y., HgEgsg
(g,t)eFxT

A general output-based rule: aycapy=oRs Y HyEfspy.
teT
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“Fairness’’ of allocation rules
E—FE
Input-based: a1 = GF_if denominator is positive; yielding
> Rgcap,
geF
R¢capy . .
arcapy = (E — Egp)| capacity-based allocation.
> Rgcap,
geF
> HiEgsyp
teT o
Output-based: |afCapy = (E — Egp)|sales-based.
F= Y. HgEgsg
(g,t)eFxT
E—F .
Generalized sales-based: GF > aRf
Y., HgEgsg
(g,t)eFxT
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The Nonlinear Complementarity Formulation

Capacity-based allocation rule:

0 <spn L Hy [—@ (Z (§gt+CAPg)) +MCy+peEs| +ppp 2 0,
geF
V(ft) € FxT
OS,LLft 1L Capf—§ft—CAPf20, VfeF, teT
0 < capy L —pcap—Ryo+ Ff— Zﬂft >0, Vf eF
teT
0 < pe 1L E— ) > HiEy;(s4+ CAPy) —enp(pe) > O
geF teT
0 < pcap L > cap,—CAP >0

geF
0<o 1L o) Rgcap,— (E— Egp)pe > 0.
geF
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The equivalent variational inequality

Find X € K such that (x — X)T®(X) > 0 for all x € K, where & is
non-monotone and K is unbounded:

® (S, cap,pe) =
( _ )
Ht —qbt Z (Sgt—CAPg) —I—MCf —|—p€Ef
9eF _ (f,)EFXT
c_ (E-EGr)peq
> Rgcap,
B geF
B — Z Hy Eg( Sgt — CAPg) — enp(pe)

\ (g,t)eEFXT

and K = { (S,cap) >0 : > cap;,—CAP > 0O
geF
capy—5p > 0, V(fit) € Fx T} x Ry
50



T he sales-based allocation formulation

IA

IA N

VAN

IA

IA

IA

spp L Hy {qﬁt (Z (ggt+CAPg)) +MCy+peEs| 4+ ppp 2 0,
geF

V(f,t) €e FxT
1 1L capf—§ft—CAPf20, VfeF, teT
capy 1 —pcap—afpe+Ff— Zﬂft >0, VfeF

teT
af 1 afcapf—aﬁfz HtEfgft > 0, VfeF
teT
pe 1 B-— Z ZHtEg(ggt‘l'CAPg)_eNP(pe) > 0
geF teT

pcap L > cap,—CAP >0

geF

o L > ajcapy—(E—Egp) >0
feF
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Iterative Algorithims
Approach I : Distributed optimization

Player 2's optimization problem

minimize  6;(z*, %)
xZ

subject to ' € X'(z™%)

A Jacobi iterative scheme.

~\ N
At iteration v, given ¥ = (:z:”).

by solving, for:=1,---, N, =

N
- compute zvT1 = (:v”"'l”)i_l

minimize  6;(z%, %)
a;-?,

subject to z' € X (a¥ ")

Convergence has not been fully investigated in general.
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Approach I: Illustration

minimize E !
p'>0 Pr

subject to Z log (14 af p/7) > Li

where Tk = ak —I—Zak pk,
J7Fi
At iteration v, given are, forallt=1,--- mand k=1,---.n

vi o i 2: 1 V]

user i computes p’T1+ = (pZ—HZ) to satisfy
k=1

0 <Py L4 aip ™ —af X >0

Z |Og(1+pu+1z m) — L,



e Solve, via sorting, the univariate piecewise smooth equation for AZ’.’“:

n n
Z log max ()\Z.H'l, " ozif) = L; — Z log(r.”"/ai}!
k=1 k=1

o set | p/TH = max(0, AVt — 77 /i

e Sufficient convergence can be established under the same conditions for
solution uniqueness.

e In practice, convergence is very fast.
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Iterative Algorithims
Approach II : Sequential (Cartesian) Nash via penalization

Player ¢'s optimization problem
minimize  6;(z*, 7%
g
subject to g'(z’, %) < 0, hi(z’) < 0O

Let {p,} be a sequence of positive scalars satisfying p, < p,+1 and tending to
co. Let {u”} be a given sequence of vectors.

At iteration v, given x¥ = (a:”)N_l compute x¥t! = ( ”+“) ._, as an equilib-
rium solution to a Nash subproblem wherein player i’'s problem is

minimize  0;(«%, 2~ Z max(0,uy" + pigh(a’,z7))>
subject to hA'(z') < 0.
Alternatively,
minimize  6;(z*, :c—z)—l— Zu exp pygz(w x Z'))

subject to A (z?) < 0,
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Concluding Remarks

e Applications of Nash equilibria abound in communication net-
works, electricity markets, supply chain systems, and other con-
texts.

e Most of these are complex and of large-scale.
e Variational and complementarity formulations offer a mathe-

matically viable framework for the rigorous analysis and compu-
tational solution of these games.
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