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Basic Components and Concepts
a deterministic, static, one-stage, non-cooperative game

• a finite set of selfish players, who compete non-cooperatively for

optimal individual well-being

• a set of strategies for each player, that is generally dependent of

rivals’ strategies

• an objective for each player, dependent on rivals’ strategies

• an optimal response set given rivals’ plays

• a guiding principle of an equilibrium, i.e., a solution, of the game

• there is no leading player; but system welfare is of concern.
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The Mathematical Setting

N number of players

x ≡
(
xi

)N
i=1

a vector tuple of strategies, xi for player i

x−i ≡
(
xj

)
j 6=i

a vector tuple of all players’ strategies, except player i

θi(x) player i’s objective, a function all players’ strategies

Xi(x−i) ⊆ <ni player i’s strategy set dependent on rivals’ strategy x−i

Anticipating rivals’ strategies x−i, player i solves

minimize
xi

θi(x
i, x−i)

subject to xi ∈ Xi(x−i)

Player i’s optimal response set: Ri(x−i) ≡ argmin
xi∈Xi(x−i)

θi(x
i, x−i).
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Definition of a Nash equilibrium

A tuple x̂ =
(
x̂i

)N
i=1

is a Nash equilibrium if,

for all i = 1, · · · , N, x̂i ∈ Ri(x̂−i), i.e., x̂i ∈ Xi(x̂−i)
and

θi(x̂
i, x̂−i) ≤ θi(x

i, x̂−i), ∀xi ∈ Xi(x̂−i).

In words, a Nash equilibrium is a tuple of strategies, one for each player, such
that no player has an incentive to unilaterally deviate from her designated
strategy if the rivals play theirs.

Some immediate questions:

• Existence, multiciplicity, characterization, computation, and sensitivity?

• Can players be better off if they collude, i.e., form bargaining groups?

• Can players be given incentives to optimize system well-being while behaving

selfishly?
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Affine Games

• each θi(x) is quadratic:

θ(xi, x−i) = 1
2 (xi )TAiixi + (xi )T

 ∑
j 6=i

Aijxj + ai


with Aii symmetric; and Aij 6= Aji for i 6= j;

• each Xi(x−i) is polyhedral given by

Xi(x−i) ≡

xi ∈ <ni+ :
n∑

j=1

Bijxj + bi ≥ 0

 ;

note the dependence of Bij on (i, j);

• extending a bimatrix (i.e., 2-person matrix) game, wherein N = 2,
(A11, a1) = 0, (A22, a2) = 0, and X1(x2) and X2(x1) are both
unit simplices (i.e., strategies are probability vectors).
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A Linear Complementarity Formulation

By linear programming duality, xi ∈ Ri(x−i) if and only if λi exists

such that (the ⊥ notation denotes complementarity slackness),

0 ≤ xi ⊥ ai +
N∑
j=1

Aijxj − (Bii )Tλi ≥ 0

0 ≤ λi ⊥ bi +
N∑
j=1

Bijxj ≥ 0;

concatenation yields an LCP in the variables
(
xi, λi

)N
i=1

.

Note that for each i, only Bii appears in the first complementarity

condition, whereas Bij for all j appear in the second.
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An Illustration for N = 2

0

0

−

0

0


≤



x1

x2

−

λ1

λ2


⊥



a1

a2

−

b1

b2


+



A11 A12 | −(B11 )T 0

A21 A22 | 0 −(B22 )T

−− −− | − −− −−−

B11 B12 | 0 0

B21 B22 | 0 0





x1

x2

−

λ1

λ2


≥ 0.

• There is no connection to a single quadratic program, let alone
a convex one.

• There is presently no algorithm that is capable of processing
this LCP in finite time.

• A major difficulty is due to the two off-diagonal blocks.
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Common Coupled Constraints
[B11 B12] = [B21 B22] and b1 = b2 = b

Is the game equivalent to the condensed LCP:
0

0

−

0

 ≤


x1

x2

−

λ

 ⊥


a1

a2

−

b

 +


A11 A12 | −(B11 )T

A21 A22 | −(B22 )T

−− −− | − −−−

B11 B12 | 0




x1

x2

−

λ

 ≥ 0.

In general, every solution to the condensed LCP is a Nash equi-

librium, but the converse is not necessarily true.

Example. Consider a 2-person game with a common coupled constraint:

minimize
x1

θ1(x1, x2) ≡ 1
2
(x1 + x2 − 1 )2 | minimize

x2

θ1(x1, x2) ≡ 1
2
(x1 + x2 − 2 )2

subject to x1 + x2 ≤ 1 | subject to x1 + x2 ≤ 1
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The equivalent LCP:

0 = −1 + x1 + x2 + λ1

0 = −2 + x1 + x2 + λ2

0 ≤ 1− x1 − x2 ⊥ λ1 ≥ 0

0 ≤ 1− x1 − x2 ⊥ λ2 ≥ 0

has solutions (x1, x2, λ1, λ2) = (α,1− α,0,1) all of which are Nash equilibria;

whereas the condensed LCP:

0 = −1 + x1 + x2 + λ

0 = −2 + x1 + x2 + λ

0 ≤ 1− x1 − x2 ⊥ λ ≥ 0

obviously has no solution.

Thus, Nash equilibria exist, but no common multipliers to the common cou-
pled constraint exist!

Solution of the condensed LCP by Lemke’s complementary pivot algorithm

has been studied by Eaves (1973).
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Equivalent Formulations

• fixed-point: x̂i ∈ Ri(x̂−i) for all i = 1, · · · , N
– fully equivalent in general

• generalized quasi-variational inequality (GQVI):

x̂ =
(
x̂i

)N
i=1

∈ X(x̂) and for some ai ∈ ∂xiθi(x̂),

N∑
i=1

(xi − x̂i )Tai ≥ 0, ∀x =
(
xi

)N
i=1

∈ X(x̂)

where X(x̂) ≡
N∏
i=1

Xi(x̂−i) is a moving set and

∂xiθi(x̂) ≡
{
ai ∈ <ni : θi(xi, x̂−i)− θi(x̂) ≥ (xi − x̂i)Tai ∀xi ∈ <ni

}
is the sub-

differential of θi(•, x̂−i) with respect to xi at x̂i

• x̂ is a Nash equilibrium if and only if x̂ is a solution to the GQVI, provided

that θi(•, x̂−i) and Xi(x̂−i) are both convex for all i.
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A Standard VI under “Joint Convexity”

Let X ≡ {x : x ∈ X(x)} be the set of fixed-points of the set-valued map X.

A substitution assumption. Suppose that for every x̃ ∈ X and every i 6= j,

x i ∈ Xi(x̃−i) ⇒ x̃j ∈ Xj(z−j),

where z−j is the vector whose k-component is x̃k for k 6= i and equals to x i

for k = i.

• Under the substitution assumption, every solution to the generalized VI:

x̂ =
(
x̂i

)N
i=1

∈ X and for some ai ∈ ∂xiθi(x̂),

N∑
i=1

(xi − x̂i )Tai ≥ 0, ∀x =
(
xi

)N
i=1

∈ X

is a solution to the GQVI; but not conversely; counterexample is provided by

the previous 2-person generalized game with a common coupled constraint.
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• Analysis of VIs typically requires the convexity of the defin-

ing set, which amounts to the “joint convexity” of the players’

strategies.

• Facchinei-Kanzow (2007) coined the term “variational equilib-

rium” to mean a solution of the GVI.

• The difference between the GQVI and the GVI is the moving

set X(x̂) in the former versus the stationary set X in the latter.
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Yet Another Equivalent Formulations (cont.)

• Karush-Kuhn-Tucker conditions: assume

Xi(x−i) ≡ {xi ∈ <ni : gi(xi, x−i) ≤ 0 },

where gi : <n → <mi, where n ≡
N∑
j=1

nj.

The KKT conditions of player i’s optimization problem:

0 = ∇xi θi(x) +
mi∑
k=1

λik∇xi g
i
k(x)

0 ≤ −gi(x) ⊥ λi ≥ 0;

concatenation yields a mixed nonlinear complementarity problem

in the variables
(
xi, λi

)N
i=1

.

Note: differentiability is needed of all functions.
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KKT Formulation and Nash Equilibrium

• Every MNCP solution is a Nash equilibrium, provided that each

θi(•, x̂−i) is convex and so is gik(•, x̂
−i) for all k = 1, · · · ,mi.

• Conversely, a Nash equilibrium is an MNCP solution under

standard constraint qualifications in nonlinear programming, such

as that of Mangasarian-Fromovitz.

• The classical case treated by Rosen (1965) assumed gi = g for

all i, where each component function gk is convex, and certain

proportionality condition on the players’ multipliers λik for the

(common) constraints.
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The regularized Nikaido-Isoda function

For an arbitrary scalar c > 0, define the bivariate function: for x =
(
xi

)N
i=1

and

y =
(
yi

)N
i=1

both in X ,

φc(x, y) ≡
N∑
i=1

[
θi(y

i, x−i)− θi(x
i, x−i) +

c

2
( yi − xi )T( yi − xi )

]
.

The regularized Nikaido-Isoda function is the value function:

χc(x) ≡ min
y∈X(x)

φc(x, y) , ∀x ∈ X .

Clearly,

χc(x) =
N∑
i=1

{
min

yi∈X i(x−i)

[
θi(y

i, x−i) +
c

2
( yi − xi )T( yi − xi )

]
− θi(x)

}
.
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Optimization Formulation

Proposition. Assume that Xi(x−i) is closed convex and θi(•, x−i) is convex
for every i and every x−i. For any scalar c > 0,

(a) χc(x) is a well-defined nonpositive function on the set X ;

(b) x̂ is a Nash equilibrium if and only if x̂ ∈ argmax
x∈X

χc(x) and χc(x̂) = 0 ;

(c) for every x ∈ X , a unique y(x) ≡ (yi(x))Ni=1 ∈ X(x) exists such that
χc(x) = φc(x, y(x));

In particular, a vector x ∈ X satisfying |χc(x)| ≤ ε for some ε > 0 can be
considered an inexact Nash equilibrium.

• In general, χc(x) is not a friendly function to be maximized.

• Furthermore, the maximization problem is non-concave; yet Krawczyk-

Uryasev have developed a “relaxation algorithm” and shown convergence

under a certain “uniform positive definiteness” condition.
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Existence of a Nash equilibrium

The Abstract Case A Nash equilibrium exists if

• each set-valued map Xi is continuous,

• compact convex sets Ki exist such that for every x−i ∈ K−i,
Xi(x−i) is a nonempty closed convex subset of Ki and θi(•, x−i)
is convex.

The Jointly Convex Case A Nash equilibrium exists if

• the set X = {x : xi ∈ Xi(x−i) ∀i } is compact convex,

• the substitution assumption holds

• each θi(•, x−i) is convex and continuously differentiable.

Both results extend the classical Nash existence theorem where

each Xi(x−i) is a constant convex compact set.
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A Degree-Theoretic Existence Result

Consider the cone complementarity problem (CCP):

C 3 x ⊥ F (x) ∈ C∗,

where C is a closed convex cone in <n and

C∗ ≡ { y ∈ <n : yTx ≥ 0, ∀x ∈ C }

is the dual cone of C.

Theorem (Facchinei-Pang) If F is continuous and

sup
τ>0

sup{ ‖x ‖ : x satisfies C 3 x ⊥ F (x) + τ x ∈ C∗} < ∞,

then the CCP has a solution.

By far the most widely applicable in the absence of boundedness.
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Multi-Leader Follower Games

Stackelberg-Nash game (1952)

There are N Nash players whose strategy sets and objective
functions are parameterized by a leader’s variable z. The leader
chooses z to optimize a performance measure, leading to a

Mathematical Program with Equilibrium Constraints

minimize
x,z

ψ(x, z)

subject to (x, z ) ∈ Z

and x ∈ NE(z)

Solution existence depends on the closedness of the Nash equilibrium map.
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More on the Stackelberg-Nash game

Nonlinear program with complementarity constraints

minimize
x,z,λ

ψ(x, z)

subject to (x, z ) ∈ Z
and for all i = 1, · · · , N

0 = ∇xi θi(x, z) +
mi∑
k=1

λik∇xi g
i
k(x, z)

0 ≤ −gi(x, z) ⊥ λi ≥ 0

• Disjunctive, nonconvex, non-standard first-order optimality conditions

• Albeit no certificate of optimality, NEOS solvers handle complementarity

constraints effectively

• Recent study of global solution in the all-affine case.
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Multi-Leader Follower Games (cont.)

There are M leaders competing at an upper level, whose strate-

gies z ≡ (zν)Mν=1 induce a set-valued response NE(z) from N

lower-level Nash players.

The overall model is to determine a Nash equilibrium ẑ for the

leaders, each of whose optimization problem is an MPEC result-

ing from a Stackelberg game parameterized by the rival leaders’

strategies.

Open challenge: Introduce a sensible notion of

an equilibrium solution and establish its existence

under a non-trivial set of realistic conditions.
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More extensions

• Nash games under uncertainty: each player solves a stochastic pro-

gram with recourse (Gürkan-Özge-Robinson 1999; Gürkan-Pang 2007)

• Differential Nash games: each player solves an optimal control problem

with a differential state equation and constraints on control:

minimize
xi,ui

θi(x,u)

subject to for almost all t ∈ [0, T ], ẋi(t) = gi(t, xi(t), ui(t))

ui(t) ∈ U i ⊆ <`i,


and xi(0) = x0,i

Leading to a differential variational inequality in the differential
variables (x,λ) and algebraic variable u, where λ is the adjoint
variable of the players’ ODEs.
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Concluding Remarks

We have

• introduced the Nash equilibrium

• presented several equivalent formulations

• given some existence theorems, and

• briefly mentioned several extensions.

• Many topics are omitted.
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The classical Arrow-Debreu abstract economy

• There are ` commodities, m producers, and n consumers.

• Producers maximize their profits equal to revenues less costs subject to
production constraints described by the production set Y j ⊆ <mj.

• Consumers maximize their utilities subject to budget and consumption con-
straints described by the consumption set Xi ⊆ <ni.

• A market clearing mechanism ensures market efficiency; i.e., price of a
commodity is positive only if production is equal to consumption.

Model variables
pk : k = 1, · · · , `, commodity prices
yjk : k = 1, · · · , `, j = 1, · · · ,m, production quantities
xik : k = 1, · · · , `, i = 1, · · · , n, consumption quantities

Model constants

aik : k = 1, · · · , `, i = 1, · · · , n, consumers’ initial endowments of commodities

αij : j = 1, · · · ,m, i = 1, · · · , n, consumers’ shares of producers’ revenues
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Producer’s problem: taking the price p as exogenously given,

maximize
yj∈Y j

pTyj − cj(yj)

Consumer: taking the price p and consumptions yj as exogenously given,

maximize
xi∈X i

ui(xi)

subject to pTxi ≤ pTai +
m∑
j=1

αij p
Tyj

Market clearing: with xi and yj taken as exogenously given,

maximize
p≥0

pT

 n∑
i=1

(xi − ai )−
m∑
j=1

yj


(prices can be normalized:

∑̀
k=1

pk = 1, if there are no production costs)
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Variations of the basic model abound; for example,

• consumers, instead of selfishly optimizing their individual utilities, may de-
termine their consumptions by jointly optimizing their total utilities by solving

maximize
x

n∑
i=1

ui(x
i)

subject to for all i = 1, · · · , n
xi ∈ Xi

pTxi ≤ pTai +
m∑
j=1

αij p
Tyj


• alternatively, the market clearing mechanism may determine the price by

maximizing a social welfare function, subject to the selfish behavior of the
producers and consumers;

• yet a third variation is that the price could be determined by an econometric

or market model and is a function of consumer consumptions.
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Multiuser communication systems: characteristics

• m users connected to a service provider via frequency-selective channels

• user lines are bundled, causing interferences

• total bandwidth divided into n frequency tones, shared by all users

• each user allocates transmission power to all tones subject to: power budget
(min) and achievable information rate (max)

• major channel impediment: crosstalk interference at each tone.

Notation

pik ≥ 0 user i’s power spectrum allocated to tone k

σik > 0 background noise of user i’s loop at tone k

αijk ≥ 0 crosstalk of frequency tone k between users i and j with αiik > 0

P i
max > 0 user i’s total power

Li > 0 user i’s target achievable rate
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Information rate: logarithm of signal to noise ratios, summed over tones

Ri(p
1, · · · , pm) ≡

n∑
k=1

log

 1 +
αiik p

i
k

σik +
∑
j 6=i

α
ij
k p

j
k

 , for user i.

Important consideration: user i can only estimate the rivals’

interferences, i.e., the sum
∑
j 6=i

α
ij
k p

j
k, and has no knowledge of

the individual summands.

Therefore, interested in a distributed algorithm that requires

minimal user coordination, although a benchmark algorithm would

be useful too.
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Model I: rate maximization with budget constraint
Yu, Ginis, and Cioffi (2002)

Anticipating noises and interferences, user i, selfishly maximizes
information rate subject to power budget; i.e., given p−i ≡ (pj)j 6=i,

maximize
p i

Ri(p
i, p−i)

subject to pik ≥ 0, k = 1, · · · , n

and
n∑

k=1

p ik = P i
max

A Nash equilibrium is a tuple p̂ ≡ (p̂ i)mi=1 such that

p̂ i ∈ argmax of user i’s problem given p̂ j for j 6= i

for each i = 1, · · · ,m.
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Model II: power minimization with rate constraint
ensuring quality of service

Anticipating noises and interferences, user i, selfishly minimizes
power budget to ensure achievable rate; i.e., given p−i ≡ (pj)j 6=i,

minimize
p i

n∑
k=1

p ik

subject to pik ≥ 0, k = 1, · · · , n

and Ri(p
i, p−i) ≥ Li.

A Nash equilibrium is similarly defined.

Model I: partitioned constraints, given P i
max

Model II: joint constraints, given Li.
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The Karush-Kuhn-Tucker conditions

Model I: as a linear complementarity problem

0 ≤ pik ⊥ σik +
n∑

j=1

α
ij
k p

j
k − αiik vi ≥ 0

0 ≤ vi

n∑
k=1

pik = P i
max

Model II: as a nonlinear complementarity problem

0 ≤ pik ⊥ σik +
n∑

j=1

α
ij
k p

j
k − αiik λi ≥ 0

0 ≤ λi

n∑
k=1

log

 1 +
αiik p

i
k

σik +
∑
j 6=i

α
ij
k p

j
k

 = Li.
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Existence of solutions: Model I

(Luo-Pang 2006): Computable by the finite Lemke algorithm,
an equilibrium exists for all αijk ≥ 0 with αiik > 0 and all σik > 0,
albeit not necessarily unique. �

The tone matrices: Mk ≡
[
α
ij
k

]n
i,j=1

, k = 1, · · · , n.

The normalized max-interference matrix

B ≡



1 β12
max · · · β1m

max

β21
max 1 · · · β2m

max
... ... . . . ...

βm1
max βm2

max · · · 1

 ,

where β
ij
max ≡ max

1≤k≤n
α
ij
k /α

ii
k i 6= j.
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Solution uniqueness: Model I

(Luo-Pang 2006) Nash equilibrium is unique if either

• each tone matrix Mk is positive definite, or

• B is an H-matrix;

•most generally, if max
1≤i≤m

n∑
k=1

m∑
j=1

α
ij
k p

i
k p

j
k > 0, for all

(
pi

)m
i=1

6= 0.

Many equivalent descriptions of an H-matrix, e.g.,

• Diag(B)−1off-Diag(B) has spectral radius less than 1, or

• Diag(B)− off-Diag(B) has positive principal minors, or

• B is strictly (quasi-)diagonally dominant; e.g., max
1≤i≤m

∑
j 6=i

βijmax < 1.
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Existence of solutions: Model II

Definition. A power tuple p ≡ (pi)mi=1 is a noiseless equilibrium if
vi ≥ 0 exists such that

NE0 : 0 ≤ pik ⊥
n∑

j=1

α
ij
k p

j
k − αiik vi ≥ 0.

The noiseless asymptotical cone:

N̂E0(L) ≡ {q ∈ NE0 \ {0 } :

n∑
k=1

log

 1 +
αiik q

i
k∑

j 6=i

α
ij
k q

j
k

 ≤ Li, i = 1, · · · ,m

 .

Main result. An equilibrium exists for all σik > 0 if N̂E0(L) = ∅.
— Proof by a degree-theoretic argument.
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A matrix criterion

Define the nonnegative matrix Zmax:

1 ( eL1 − 1 )β12
max · · · ( eL1 − 1 )β1m

max

( eL2 − 1 )β21
max 1 · · · ( eL2 − 1 )β2m

max
... ... . . . ...

( eLm − 1 )βm1
max ( eLm − 1 )βm2

max · · · 1

 .

Corollary. An equilibrium exists for all σik > 0 if Zmax is an
H-matrix. In particular, this holds if

χ ≡ 1− max
1≤i≤m

 ( eLi − 1 )
∑
j 6=i

β
ij
max

 > 0,

ensuring strict diagonal dominance of Zmax.

Uniqueness can be established under a more restrictive condition.
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Comparisons of results

Model I Model II

• power budget restriction • quality of service

• partitioned constraints • joint constraints

• essentially a linear problem • a nonlinear problem

• existence independent of crosstalk • existence dependent on crosstalk

coefficients and power budgets coefficients and achievable rates

• solvable by a finite algorithm • no finite algorithm is known

• uniqueness independent of noises • uniqueness dependent on ratios

of noises

• admits a single optimization • no such formulation is known

formulation with symmetric crosstalk
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Emissions Permit Allocation in Electric Markets

• Pollutant emission cap-and-trade systems existed since the 1990 Clean Act
Amendments for SO2 in the US, and later for NOx and mercury.

• Recent emissions trading systems for greenhouse gas CO2 by the European
Union, which are expected to have much larger economic impacts with the
potential of distorting market efficiency.

• Study the long-run effect of CO2 permit allocation schemes on market effi-
ciency, including generator investment and operation decisions and consumer
prices, using complementarity modeling.

• Alternative emissions allocation rules: mixtures of

— grandfathering: initial allocation based on historical benchmark

— contingent allocation: depending on future input and output decisions.
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Characteristics of model

• Allowing minimum output constraints

• Capacity markets in addition to energy markets

• Arbitrary temporal price-sensitive demand distribution

• Price-taking and/or price-participating firms

• Endogenous allocation allowances

• Some refinements are straightforward.
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Notations

Parameters: all nonnegative

F Set of firms

T Set of time periods ≡ {1, · · · , T}
CAPf Minimal amount of energy that firm f has to generate (MW)

MCf Marginal cost for firm f , excluding cost of emission
allowances (EURO/MWh)

Ef Emission rate for firm f (tons/MWh)

Ff Annualized investment cost of firm f ’s capacity (EURO/MWyr)

Rf Fraction of emission allowance for firm f 6= 1,
normalized with respect to firm 1

R̂f Proportion of sales-based emission allowance for firm f
CAP Total capacity requirement (MW)

Ht Time converter (hr/yr)

E Total emission allowances supply (tons/yr): E > EGF

EGF Amount of emission allowances grandfathered (tons/yr)

K Unit converter = 1 MW 2 yr/EURO
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Functions:

dt(·) Demand function, strictly monotonically decreasing (MW)

φt(·) The inverse of dt(·); (EURO/MWh)

eNP(·) Nonpower emission, nonincreasing (tons/yr)

Variables:

pt Energy price during period t (EURO/MWh): function of

total sales
∑
g∈F

sgt

pe Emission allowance price (EURO/ton)

pcap Capacity price(EURO/MWyr)

αf Emission allowance for firm f (tons/MWyr)

sft Energy sold by firm f in period t (MW)

sft = sft −CAPf (MW)

capf Capacity for firm f (MW)

µft Dual variable associated with firm f ’s capacity constraint
in period t (EURO/MWyr)
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Firm f’s profit maximization problem

Anticipating prices p∗t and pe∗ and rival firms’ capg for all g 6= f ,

maximize
capf , (sft)t∈T

∑
t∈T

Ht ( p
∗
t −MCft − pe∗Ef )sft + ( pe∗α∗f − Ff ) capf

subject to CAPf ≤ sft ≤ capf , ∀ t ∈ T

and capf +
∑
g∈F
g 6=f

capg ≥ CAP a common joint constraint

When firms exert market power, firm’s revenue from energy sales
becomes ∑

t∈T
Ht sft pt

 ∑
g∈F

sgt

 .
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Emission and capacity markets

Allowance price is positive only when demands for allowances
equal supplies:

0 ≤ pe ⊥ eNP (pe)−

E −
∑
g∈F

∑
t∈T

HtEg sgt

 ≥ 0 .

Capacity price is positive only when demands for capacity equal
available capacity:

0 ≤ pcap ⊥
∑
f∈F

capf −CAP ≥ 0 ,

implying common multipliers for joint capacity constraint.
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Market clearing conditions and emission rules

• Supplies balancing demands:
∑
f∈F

sft = dt(p
∗
t ), for all t ∈ T

• Balance of emissions allowances:
∑
f∈F

α∗fcapf = E − EGF .

Input-based rule:
α∗f
α∗1

= Rf > 0, for all f ∈ F;

An output-based rule: αfcapf =

∑
t∈T

HtEf sft∑
(g,t)∈F×T

HgEg sgt
(E − EGF );

A general output-based rule: αf capf = σ R̂f
∑
t∈T

HtEf sft.
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“Fairness” of allocation rules

Input-based: α1 =
E − EGF∑
g∈F

Rgcapg
if denominator is positive; yielding

αfcapf =
Rfcapf∑

g∈F
Rgcapg

(E − EGF ) capacity-based allocation.

Output-based: αfcapf =

∑
t∈T

HtEf sft∑
(g,t)∈F×T

HgEg sgt
(E − EGF ) sales-based.

Generalized sales-based:
E − EGF∑

(g,t)∈F×T
HgEg sgt

→ σ R̂f
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The Nonlinear Complementarity Formulation

Capacity-based allocation rule:

0 ≤ s̄ft ⊥ Ht

−φt
 ∑
g∈F

( s̄gt + CAPg )

 + MCf + peEf

 + µft ≥ 0,

∀ ( f, t ) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft −CAPf ≥ 0, ∀ f ∈ F; t ∈ T

0 ≤ capf ⊥ −pcap−Rf σ+ Ff −
∑
t∈T

µft ≥ 0, ∀ f ∈ F

0 ≤ pe ⊥ Ē −
∑
g∈F

∑
t∈T

HtEg ( s̄gt + CAPg )− eNP (pe) ≥ 0

0 ≤ pcap ⊥
∑
g∈F

capg −CAP ≥ 0

0 ≤ σ ⊥ σ
∑
g∈F

Rg capg − (E − EGF ) pe ≥ 0.
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The equivalent variational inequality

Find x̄ ∈ K such that (x− x̄)TΦ(x̄) ≥ 0 for all x ∈ K, where Φ is
non-monotone and K is unbounded:

Φ(s̄,cap, pe) ≡

Ht
−φt

 ∑
g∈F

( s̄gt −CAPg )

 + MCf + peEf

 
(f,t)∈F×T

F−
(E − EGF ) pe∑
g∈F

Rg capg
R

E −
∑

(g,t)∈F×T
HtEg ( s̄gt −CAPg ) − eNP (pe)


and K ≡ { ( s̄,cap ) ≥ 0 :

∑
g∈F

capg − CAP ≥ 0

capf − s̄ft ≥ 0, ∀ ( f, t ) ∈ F × T
}
× R+.
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The sales-based allocation formulation

0 ≤ s̄ft ⊥ Ht

−φt
 ∑
g∈F

( s̄gt + CAPg )

 + MCf + peEf

 + µft ≥ 0,

∀ ( f, t ) ∈ F × T

0 ≤ µft ⊥ capf − s̄ft −CAPf ≥ 0, ∀ f ∈ F; t ∈ T

0 ≤ capf ⊥ −pcap− αf pe+ Ff −
∑
t∈T

µft ≥ 0, ∀ f ∈ F

0 ≤ αf ⊥ αf capf − σ R̂f
∑
t∈T

HtEf s̄ft ≥ 0, ∀f ∈ F

0 ≤ pe ⊥ E −
∑
g∈F

∑
t∈T

HtEg ( s̄gt + CAPg )− eNP (pe) ≥ 0

0 ≤ pcap ⊥
∑
g∈F

capg −CAP ≥ 0

0 ≤ σ ⊥
∑
f∈F

αf capf − (E − EGF ) ≥ 0
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Iterative Algorithms
Approach I : Distributed optimization

Player i’s optimization problem

minimize
xi

θi(x
i, x−i)

subject to xi ∈ Xi(x−i)

A Jacobi iterative scheme.

At iteration ν, given xν ≡
(
xν,i

)N
i=1

, compute xν+1 ≡
(
xν+1,i

)N
i=1

by solving, for i = 1, · · · , N ,

minimize
xi

θi(x
i, xν,−i)

subject to xi ∈ Xi(xν,−i)

Convergence has not been fully investigated in general.
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Approach I: Illustration

minimize
p i≥0

n∑
k=1

p ik

subject to
n∑

k=1

log
(
1 + αiik p

i
k/τ

i
k

)
≥ Li

where τ ik ≡ σik +
∑
j 6=i

αijk p
j
k

At iteration ν, given are, for all i = 1, · · · ,m and k = 1, · · · , n,

τ ν,ik ≡ σik +
∑
j 6=i

αijk p
ν,j
k ,

user i computes pν+1,i =
(
pν+1,i
k

)n
k=1

to satisfy

0 ≤ pν+1,i
k ⊥ τ ν,ik + αiik p

ν+1,i
k − αiik λ

ν+1
i ≥ 0

n∑
k=1

log
(
1 + pν+1,i

k /τ ν,ik

)
= Li.
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• Solve, via sorting, the univariate piecewise smooth equation for λν+1
i :

n∑
k=1

logmax
(
λν+1
i , τ ν,ik /αiik

)
= Li −

n∑
k=1

log(τ ν,ik /αiik )

• set pν+1,i
k ≡ max(0, λν+1

i − τ ν,ik /αiik )

• Sufficient convergence can be established under the same conditions for
solution uniqueness.

• In practice, convergence is very fast.
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Iterative Algorithms
Approach II : Sequential (Cartesian) Nash via penalization

Player i’s optimization problem

minimize
xi

θi(xi, x−i)

subject to gi(xi, x−i) ≤ 0, hi(xi) ≤ 0

Let {ρν} be a sequence of positive scalars satisfying ρν < ρν+1 and tending to
∞. Let {uν} be a given sequence of vectors.

At iteration ν, given xν ≡
(
xν,i

)N
i=1

, compute xν+1 ≡
(
xν+1,i

)N
i=1

as an equilib-
rium solution to a Nash subproblem, wherein player i’s problem is

minimize
xi

θi(xi, x−i) +
1

2 ρν

mi∑
k=1

max(0, uν,ik + ρig
i
k(x

i, x−i))2

subject to hi(xi) ≤ 0.

Alternatively,

minimize θi(xi, x−i) +
1

ρν

mi∑
k=1

uν,ik exp
(
ρνg

i
i(x

i, x−i)
)

subject to hi(xi) ≤ 0,
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Concluding Remarks

• Applications of Nash equilibria abound in communication net-

works, electricity markets, supply chain systems, and other con-

texts.

• Most of these are complex and of large-scale.

• Variational and complementarity formulations offer a mathe-

matically viable framework for the rigorous analysis and compu-

tational solution of these games.
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