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stochastic optimization

Question: How to model uncertainty in the inputs?
 data may not yet be available

 obtaining exact data is difficult/expensive/time-consuming

Goal: make (near)-optimal decisions given some predictions 
(probability distribution on potential inputs).

Studied since the 1950s, and for good reason: many practical 
applications…



Approximation Algorithms

Recent development of approximation algorithms 
for NP-hard stochastic optimization problems.

I will give an overview of some of the results/ideas in 
the talks today and tomorrow.



models with recourse

The problem instance is revealed in “stages”
 initially we perform some anticipatory actions

 at each stage, more information released

 we may take some more recourse actions at this point

Initially, given “guesses” about final problem instance
(i.e.,  given probability distribution ¼ over problem instances)

Want to minimize:

Cost(Initial actions) + E¼ [ cost of recourse actions ]



the Steiner tree problem

Input: a metric space

a root vertex r

a subset R of terminals

Output: a tree T connecting R to r
of minimum length/cost.

Facts: NP-hard

MST is a 2-approximation
cost(MST(R [ r)) ≤ 2 OPT(R)

[Robins Zelikovsky ’99+ gave a 
1.55-approximation



“two-stage” Steiner tree

The Model:

Instead of one set R, we are 
given probability distribution ¼
over subsets of nodes.

E.g., each node v independently 
belongs to R with probability pv

Or, may be explicitly defined 
over a small set of “scenarios”

pA = 0.6 pB = 0.25 pC = 0.15



“two-stage” Steiner tree

Stage I (“Monday”)

Pick some set of edges EM

at costM(e) for each edge e

Stage II (“Tuesday”)

Random set R is drawn from ¼

Pick some edges ET,R so that 
EM [ ET,R connects R to root

cost change to costT,R (e)

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]
pA = 0.6 pB = 0.25 pC = 0.15



approximation algorithm

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]

Optimum:

Sets EM* and ET,R* which 
achieve expected cost Z*

A c-approximation:

Find sets EM and ET,R that 
achieve expected cost c.Z*

for some small factor c.

pA = 0.6 pB = 0.25 pC = 0.15



pictures: two-stage and multi-stage

In each stage, the probability 
distribution ¼ is 
progressively refined

And the costs change.
Usually they increase…

0.1
0.3

0.01

0.12

stage III scenarios

stage I

0.1
0.3

0.6

0.4 0.6

0.50.50.10.9

stage II scenarios



another example: facility location

Input: Metric space
node set R of clients

facility costs fv for each node v

Output: node set F of facilities

Minimize:

v in F fv + u in R dist(u, F)

Facts: 1.50-approx [Byrka ‘07+

1.463-hard [Guha Khuller ‘98+
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and the stochastic version

Initially facility at v costs fv

Distribution ¼ on tuples ¿ = (R, fv(¿))

 random node set R of clients

 facility costs fv(¿) in this scenario

Monday: buy facilities FM

Tuesday: scenario ¿ drawn from ¼

buy some more facilities FT(¿)

minimize:

v in FM fv + E¿ ← ¼ [ v in FT fv(¿) + u in R dist(u, FM [ FT) ]



complexity?

 Stochastic  discrete optimization problems can be solved 
using Mixed Integer Program formulations
 no poly-time algorithms unless P=NP.

 Also, stochastic problems are harder than deterministic ones
 E.g., many 2-stage stochastic versions of Shortest paths are NP-hard.

 Two-stage stochastic linear programming is #P-hard.



background(1)

Scheduling with stochastic data
 Substantial work [Pinedo ’95+

 Also on approximation algorithms 
[Möhring Schulz Uetz, Skutella & Uetz, Scharbrodt et al, Souza & Steger,…+

Approximation Algorithms
 Resource provisioning using LP rounding

[Dye Stougie Tomasgard; Nav. Res. Qtrly ’03+

 Approximation for Steiner tree, facility location
[Immorlica Karger Minkoff Mirrokni SODA ’04+ 

 Facility location, vertex cover, etc using LP rounding
[Ravi Sinha IPCO ’04+



background(2)

Main citations relevant to this talk:

The “Boosted Sampling” approach:

two-stage problems [Gupta Pal Ravi Sinha, STOC ’04+

multistage problems [Gupta Pal Ravi Sinha, APPROX ’05+

Solving and Rounding stochastic linear programs:

two stage problems [Shmoys Swamy, FOCS ’04+

multistage problems [Shmoys Swamy, FOCS ’05+

both reduce
stochastic case

to
deterministic case

in different ways



recap: two stage

 Given probability distribution ¼ over the second-stage data

 Two stages of decision-making.
 Monday: make anticipatory decisions based on ¼

 Tuesday: make recourse decisions after seeing actual data.

 Minimize the expected cost incurred.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



representations of ¼

 “Explicit scenarios” model
 Complete listing of the sample space

 “Black box” access to probability distribution
 generates an independent random sample from ¼

 Also, independent decisions
 Each vertex v appears with probability pv indep. of others.



vertex cover

vertex cover = set of vertices that hit all edges.

 Finding minimum cost vertex cover is NP-hard.

2-approx: several algorithms

easy one: solve the linear program relaxation and round



Boolean variable x(v) = 1 iff vertex v chosen in the vertex cover

minimize v c(v) x(v)

subject to

x(v) + x(w)  ≥ 1 for each edge (v,w) in edge set E

and

x’s are in {0,1}

integer-program formulation



stochastic vertex cover

Explicit scenario model: 

M scenarios explicitly listed.
Edge set Ek appears with prob. pk

Vertex costs c(v) on Monday, ck(v) on 
Tuesday if scenario k appears.

Pick V0 on Monday, Vk on Tuesday

such that (V0 [ Vk) covers Ek.

Minimize c(V0) + Ek [ ck(Vk) ] p1 = 0.1 p2 = 0.6 p3 = 0.3



Boolean variable x(v) = 1 iff v chosen on Monday, 
yk(v) = 1 iff v chosen on Tuesday if scenario k realized

minimize v c(v) x(v) + k pk [ v ck(v) yk(v) ]

subject to

[ x(v) + yk(v) ] + [ x(w) + yk(w) +  ≥ 1 for each k, edge (v,w) in Ek

and

x’s, y’s are Boolean

integer-program formulation



minimize v c(v) x(v) + k pk [ v ck(v) yk(v) ]

subject to

[ x(v) + yk(v) ] + [ x(w) + yk(w) +  ≥ 1 for each k, edge (v,w) in Ek

Now choose V0 = , v | x(v) ≥ ¼ -, and Vk = { v | yk(v) ≥ ¼ -

Note: if we have explicit multi-stage solution with k stages, gives 2k approximation

We are increasing variables by factor of 4
we get a 4-approximation

linear-program relaxation



solving the LP and rounding

 This idea useful for many stochastic problems
 Set cover, Facility location, some cut problems

 Tricky when the sample space is exponentially large
 exponential number of variables and constraints

 natural (non-trivial) approaches have run-times depending on the 
variance of the problem…

 Shmoys and Swamy approach:
 consider this doubly-exponential vertex cover LP in black-box model

 can approximate it arbitrarily well, smaller run-times.

 solution has exponential size, 

but we need only polynomially-large parts of it at a time.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



two-stage Steiner tree

Stage I (“Monday”)

Pick some set of edges EM

at costM(e) for each edge e

Stage II (“Tuesday”)

Random set R is drawn from ¼

Pick some edges ET,R so that 
EM [ ET,R connects R to root

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]
inflation ¸e,R = costT,R(e)

costM (e)

Distribution ¼ given as black-box



simplifying assumption

“Proportional costs”

 On Tuesday, inflation for all edges is a fixed factor ¸.
i.e., there is some ¸ such that costT,R(e) = ¸ costM (e).

 Results generalize to case when inflation ¸R depends on scenario,
but still same for all edges.

 If different edges have different inflation, 
Steiner tree problem much harder to approximate.

Bottom line: every edge costs exactly ¸ times more on Tuesday

Objective Function:  cM(EM) + ¸ E¼ [ cM(ET,R) ]



boosted sampling algorithm

 Sample from the distribution ¼ of clients ¸ times

 Let sampled set be S

 Build minimum spanning tree T0 on S root
 Recall: MST is a 2-approximation to Minimum Steiner tree

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Theorem: 4-approximation to Stochastic Steiner Tree

inflation factor



Algorithm: Illustration

Input, with λ=3

 Sample λ times from client 
distribution

 Build MST T0 on S

 When actual scenario R is 
realized, extend T0 to span R in a 
min cost way



the analysis

 1st stage: Sample from the distribution of clients λ times

 Build minimum spanning tree T0 on S root

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Proof Strategy:

 E[Cost(1st stage)] ≤ 2 £ OPT

 E[Cost(2nd stage)] ≤ 2 £ OPT

OPT = c(T
¤
0
) + E¼[¾ ¢ c(T

¤
R
)]λ



Analysis of 1st stage cost

Claim 1: E[cost(T0) ≤ 2 £ OPT

Proof: Our λ samples: S= S1 [ S2 [… [ Sλ

If we take        and all the        from OPT’s solution, 
we get a feasible solution for a Steiner tree on S root.

An MST on S costs at most 2 times this Steiner tree.

31

T
¤
0

T
¤
Sj



Analysis of 1st stage cost(formal)
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the analysis

 1st stage: Sample from the distribution of clients λ times

 Build minimum spanning tree T0 on S root

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Proof Strategy:

 E[Cost(1st stage)] ≤ 2 £ OPT

 E[Cost(2nd stage)] ≤ 2 £ OPT

OPT = c(T
¤
0
) + E¼[¾ ¢ c(T

¤
R
)]λ



a “cost sharing” scheme for MST 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.



a useful “cost sharing” scheme 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.



a useful “cost sharing” scheme 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.

Let pe(X) = {pev | v X}.



Analysis of 2nd stage cost

 Consider this:

take λ+1 samples from the distribution, instead of λ

 E[Cost of MST on these λ+1 samples] ≤

 Pick one sample at random, call it real terminal set R.

Others λ samples are S1, S2, …, Sλ with S = Sj

Expected cost of pe(R) ≤

2(¸ + 1) OPT
¸

MST (R [ S)
¸ + 1

2  OPT
¸

≤



Analysis of 2nd stage cost

But pe(R) MST(S) is a feasible Steiner tree for R.

buying pe(R) is a feasible action for the second stage!

Hence, E[cost of second stage] ≤ E[λ c(pe(R))] ≤ 2 OPT.

Expected cost of pe(R) ≤ 2  OPT
¸



Recap

 Algorithm for Stochastic Steiner Tree:
 1st stage: Sample λ times, build MST

 2nd stage: Extend MST to realized clients

 Theorem: Boosted-Sample is a 4-approximation to 
Stochastic Steiner Tree.

 Other problems like Facility location, Vertex cover, also have 
such sampling based algorithms
 Require analogous notions of cost-shares for these problems

 we call these “strict” cost-shares.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



a quick comparison

Boosted Sampling

 combinatorial

 require ¸ samples

 cost-shares: “primal-dual”?

 only proportional costs

Shmoys-Swamy

 convex programming-based

 require more samples

 primal-only techniques

 general cost structure



last slide…

 This was perhaps the simplest model, still interesting results
 what about algorithms for other models?

 Can we improve the approximation bounds 
given by these algorithms?
 is stochastic Steiner tree actually harder than 

its deterministic variant?

 Which other problems can be solved in this model?
 Not known how to solve set cover using boosted sampling.


