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stochastic optimization

Question: How to model uncertainty in the inputs?
 data may not yet be available

 obtaining exact data is difficult/expensive/time-consuming

Goal: make (near)-optimal decisions given some predictions 
(probability distribution on potential inputs).

Studied since the 1950s, and for good reason: many practical 
applications…



Approximation Algorithms

Recent development of approximation algorithms 
for NP-hard stochastic optimization problems.

I will give an overview of some of the results/ideas in 
the talks today and tomorrow.



models with recourse

The problem instance is revealed in “stages”
 initially we perform some anticipatory actions

 at each stage, more information released

 we may take some more recourse actions at this point

Initially, given “guesses” about final problem instance
(i.e.,  given probability distribution ¼ over problem instances)

Want to minimize:

Cost(Initial actions) + E¼ [ cost of recourse actions ]



the Steiner tree problem

Input: a metric space

a root vertex r

a subset R of terminals

Output: a tree T connecting R to r
of minimum length/cost.

Facts: NP-hard

MST is a 2-approximation
cost(MST(R [ r)) ≤ 2 OPT(R)

[Robins Zelikovsky ’99+ gave a 
1.55-approximation



“two-stage” Steiner tree

The Model:

Instead of one set R, we are 
given probability distribution ¼
over subsets of nodes.

E.g., each node v independently 
belongs to R with probability pv

Or, may be explicitly defined 
over a small set of “scenarios”

pA = 0.6 pB = 0.25 pC = 0.15



“two-stage” Steiner tree

Stage I (“Monday”)

Pick some set of edges EM

at costM(e) for each edge e

Stage II (“Tuesday”)

Random set R is drawn from ¼

Pick some edges ET,R so that 
EM [ ET,R connects R to root

cost change to costT,R (e)

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]
pA = 0.6 pB = 0.25 pC = 0.15



approximation algorithm

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]

Optimum:

Sets EM* and ET,R* which 
achieve expected cost Z*

A c-approximation:

Find sets EM and ET,R that 
achieve expected cost c.Z*

for some small factor c.

pA = 0.6 pB = 0.25 pC = 0.15



pictures: two-stage and multi-stage

In each stage, the probability 
distribution ¼ is 
progressively refined

And the costs change.
Usually they increase…
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another example: facility location

Input: Metric space
node set R of clients

facility costs fv for each node v

Output: node set F of facilities

Minimize:

v in F fv + u in R dist(u, F)

Facts: 1.50-approx [Byrka ‘07+

1.463-hard [Guha Khuller ‘98+
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and the stochastic version

Initially facility at v costs fv

Distribution ¼ on tuples ¿ = (R, fv(¿))

 random node set R of clients

 facility costs fv(¿) in this scenario

Monday: buy facilities FM

Tuesday: scenario ¿ drawn from ¼

buy some more facilities FT(¿)

minimize:

v in FM fv + E¿ ← ¼ [ v in FT fv(¿) + u in R dist(u, FM [ FT) ]



complexity?

 Stochastic  discrete optimization problems can be solved 
using Mixed Integer Program formulations
 no poly-time algorithms unless P=NP.

 Also, stochastic problems are harder than deterministic ones
 E.g., many 2-stage stochastic versions of Shortest paths are NP-hard.

 Two-stage stochastic linear programming is #P-hard.



background(1)

Scheduling with stochastic data
 Substantial work [Pinedo ’95+

 Also on approximation algorithms 
[Möhring Schulz Uetz, Skutella & Uetz, Scharbrodt et al, Souza & Steger,…+

Approximation Algorithms
 Resource provisioning using LP rounding

[Dye Stougie Tomasgard; Nav. Res. Qtrly ’03+

 Approximation for Steiner tree, facility location
[Immorlica Karger Minkoff Mirrokni SODA ’04+ 

 Facility location, vertex cover, etc using LP rounding
[Ravi Sinha IPCO ’04+



background(2)

Main citations relevant to this talk:

The “Boosted Sampling” approach:

two-stage problems [Gupta Pal Ravi Sinha, STOC ’04+

multistage problems [Gupta Pal Ravi Sinha, APPROX ’05+

Solving and Rounding stochastic linear programs:

two stage problems [Shmoys Swamy, FOCS ’04+

multistage problems [Shmoys Swamy, FOCS ’05+

both reduce
stochastic case

to
deterministic case

in different ways



recap: two stage

 Given probability distribution ¼ over the second-stage data

 Two stages of decision-making.
 Monday: make anticipatory decisions based on ¼

 Tuesday: make recourse decisions after seeing actual data.

 Minimize the expected cost incurred.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



representations of ¼

 “Explicit scenarios” model
 Complete listing of the sample space

 “Black box” access to probability distribution
 generates an independent random sample from ¼

 Also, independent decisions
 Each vertex v appears with probability pv indep. of others.



vertex cover

vertex cover = set of vertices that hit all edges.

 Finding minimum cost vertex cover is NP-hard.

2-approx: several algorithms

easy one: solve the linear program relaxation and round



Boolean variable x(v) = 1 iff vertex v chosen in the vertex cover

minimize v c(v) x(v)

subject to

x(v) + x(w)  ≥ 1 for each edge (v,w) in edge set E

and

x’s are in {0,1}

integer-program formulation



stochastic vertex cover

Explicit scenario model: 

M scenarios explicitly listed.
Edge set Ek appears with prob. pk

Vertex costs c(v) on Monday, ck(v) on 
Tuesday if scenario k appears.

Pick V0 on Monday, Vk on Tuesday

such that (V0 [ Vk) covers Ek.

Minimize c(V0) + Ek [ ck(Vk) ] p1 = 0.1 p2 = 0.6 p3 = 0.3



Boolean variable x(v) = 1 iff v chosen on Monday, 
yk(v) = 1 iff v chosen on Tuesday if scenario k realized

minimize v c(v) x(v) + k pk [ v ck(v) yk(v) ]

subject to

[ x(v) + yk(v) ] + [ x(w) + yk(w) +  ≥ 1 for each k, edge (v,w) in Ek

and

x’s, y’s are Boolean

integer-program formulation



minimize v c(v) x(v) + k pk [ v ck(v) yk(v) ]

subject to

[ x(v) + yk(v) ] + [ x(w) + yk(w) +  ≥ 1 for each k, edge (v,w) in Ek

Now choose V0 = , v | x(v) ≥ ¼ -, and Vk = { v | yk(v) ≥ ¼ -

Note: if we have explicit multi-stage solution with k stages, gives 2k approximation

We are increasing variables by factor of 4
we get a 4-approximation

linear-program relaxation



solving the LP and rounding

 This idea useful for many stochastic problems
 Set cover, Facility location, some cut problems

 Tricky when the sample space is exponentially large
 exponential number of variables and constraints

 natural (non-trivial) approaches have run-times depending on the 
variance of the problem…

 Shmoys and Swamy approach:
 consider this doubly-exponential vertex cover LP in black-box model

 can approximate it arbitrarily well, smaller run-times.

 solution has exponential size, 

but we need only polynomially-large parts of it at a time.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



two-stage Steiner tree

Stage I (“Monday”)

Pick some set of edges EM

at costM(e) for each edge e

Stage II (“Tuesday”)

Random set R is drawn from ¼

Pick some edges ET,R so that 
EM [ ET,R connects R to root

Objective Function:

costM (EM) + E¼ [ costT,R (ET,R) ]
inflation ¸e,R = costT,R(e)

costM (e)

Distribution ¼ given as black-box



simplifying assumption

“Proportional costs”

 On Tuesday, inflation for all edges is a fixed factor ¸.
i.e., there is some ¸ such that costT,R(e) = ¸ costM (e).

 Results generalize to case when inflation ¸R depends on scenario,
but still same for all edges.

 If different edges have different inflation, 
Steiner tree problem much harder to approximate.

Bottom line: every edge costs exactly ¸ times more on Tuesday

Objective Function:  cM(EM) + ¸ E¼ [ cM(ET,R) ]



boosted sampling algorithm

 Sample from the distribution ¼ of clients ¸ times

 Let sampled set be S

 Build minimum spanning tree T0 on S root
 Recall: MST is a 2-approximation to Minimum Steiner tree

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Theorem: 4-approximation to Stochastic Steiner Tree

inflation factor



Algorithm: Illustration

Input, with λ=3

 Sample λ times from client 
distribution

 Build MST T0 on S

 When actual scenario R is 
realized, extend T0 to span R in a 
min cost way



the analysis

 1st stage: Sample from the distribution of clients λ times

 Build minimum spanning tree T0 on S root

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Proof Strategy:

 E[Cost(1st stage)] ≤ 2 £ OPT

 E[Cost(2nd stage)] ≤ 2 £ OPT

OPT = c(T
¤
0
) + E¼[¾ ¢ c(T

¤
R
)]λ



Analysis of 1st stage cost

Claim 1: E[cost(T0) ≤ 2 £ OPT

Proof: Our λ samples: S= S1 [ S2 [… [ Sλ

If we take        and all the        from OPT’s solution, 
we get a feasible solution for a Steiner tree on S root.

An MST on S costs at most 2 times this Steiner tree.

31

T
¤
0

T
¤
Sj



Analysis of 1st stage cost(formal)
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the analysis

 1st stage: Sample from the distribution of clients λ times

 Build minimum spanning tree T0 on S root

 2nd stage: actual client set R realized
 Extend T0 with some edges in TR so as to span R

Proof Strategy:

 E[Cost(1st stage)] ≤ 2 £ OPT

 E[Cost(2nd stage)] ≤ 2 £ OPT

OPT = c(T
¤
0
) + E¼[¾ ¢ c(T

¤
R
)]λ



a “cost sharing” scheme for MST 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.



a useful “cost sharing” scheme 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.



a useful “cost sharing” scheme 

Associate each node v with its parent edge pev

1. *“Budget Balance”+
cost of MST(S) = ∑v S c(pev).

2. *“Late-comers OK”+
If S = B G, then 

spanning-tree(B) {pev | v G} spans S.

Let pe(X) = {pev | v X}.



Analysis of 2nd stage cost

 Consider this:

take λ+1 samples from the distribution, instead of λ

 E[Cost of MST on these λ+1 samples] ≤

 Pick one sample at random, call it real terminal set R.

Others λ samples are S1, S2, …, Sλ with S = Sj

Expected cost of pe(R) ≤

2(¸ + 1) OPT
¸

MST (R [ S)
¸ + 1

2  OPT
¸

≤



Analysis of 2nd stage cost

But pe(R) MST(S) is a feasible Steiner tree for R.

buying pe(R) is a feasible action for the second stage!

Hence, E[cost of second stage] ≤ E[λ c(pe(R))] ≤ 2 OPT.

Expected cost of pe(R) ≤ 2  OPT
¸



Recap

 Algorithm for Stochastic Steiner Tree:
 1st stage: Sample λ times, build MST

 2nd stage: Extend MST to realized clients

 Theorem: Boosted-Sample is a 4-approximation to 
Stochastic Steiner Tree.

 Other problems like Facility location, Vertex cover, also have 
such sampling based algorithms
 Require analogous notions of cost-shares for these problems

 we call these “strict” cost-shares.



roadmap

 example: stochastic vertex cover
(using LPs)

 example: stochastic Steiner tree
(using “boosted sampling”)

 comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



a quick comparison

Boosted Sampling

 combinatorial

 require ¸ samples

 cost-shares: “primal-dual”?

 only proportional costs

Shmoys-Swamy

 convex programming-based

 require more samples

 primal-only techniques

 general cost structure



last slide…

 This was perhaps the simplest model, still interesting results
 what about algorithms for other models?

 Can we improve the approximation bounds 
given by these algorithms?
 is stochastic Steiner tree actually harder than 

its deterministic variant?

 Which other problems can be solved in this model?
 Not known how to solve set cover using boosted sampling.


