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stochastic optimization

Question: How to model uncertainty in the inputs?
= data may not yet be available
= obtaining exact data is difficult/expensive/time-consuming

Goal: make (near)-optimal decisions given some predictions
(probability distribution on potential inputs).

Studied since the 1950s, and for good reason: many practical
applications...



Approximation Algorithms

Recent development of approximation algorithms
for NP-hard stochastic optimization problems.

| will give an overview of some of the results/ideas in
the talks today and tomorrow.



models with recourse

The problem instance is revealed in “stages”

= jnitially we perform some anticipatory actions
= at each stage, more information released
= we may take some more recourse actions at this point

Initially, given “guesses” about final problem instance

(i.e., given probability distribution 7 over problem instances)

Want to minimize:

Cost(Initial actions) + E_ [ cost of recourse actions ]



the Steiner tree problem

Input: a metric space
a root vertex r
a subset R of terminals

Output: a tree T connecting Rto r
of minimum length/cost.

Facts: NP-hard

MST is a 2-approximation
cost(MST(R U r)) £2 OPT(R)

[Robins Zelikovsky "99] gave a
1.55-approximation



“two-stage” Steiner tree

The Model: ® ® ®
Instead of one set R, we are ® ° () PPN @
given probability distribution 7 ® ®
over subsets of nodes. @ “ o @ o ®
@ ® @
E.g., each node v independently ° ®
belongs to R with probability p, “ O
e ® o
Or, may be explicitly defined
over a small set of “scenarios” . ':‘.'“ ol | ':‘.’“ o | ':‘.’“ .




“two-stage” Steiner tree

Stage | (“Monday”) ® ®

Pick some set of edges E,, ® @ @
at cost,,(e) for each edge e

@ @
o @ %o
Stage Il (“Tuesday”) @ ® @
Random set R is drawn from 7 0o @
Pick some edges E;; so that @ ¢
Ey U Erg connects R to root e ® o
cost change to cost; (e) o . e . o .
%0 %00®| |2 0 %00®| |2 0 %00®
e % o L e % o ° e ®, o °
Objective Function: .:‘ .o ':‘ oo ':‘ oo
Q9 Q9 [ J5)
costy, (Ey) + E [ costyp (Erg) ] ° oo o ® o0 o ® oo o




approximation algorithm

Objective Function: @) O
COStM (EI\/I) + E7r [ COStT,R (ET,R) ] ¢ @ @

Optimum: O
Sets E\,* and E;;* which ° @ °
1 *
achieve expected cost Z o6 ®
@
© @
A c-approximation: @ @
Find sets E\, and E; that 0 o  ® o 0 o
achieve expected cost c.Z* ©00%00°% | |50 o%0® | |50 %0
“‘. e [} “‘. IS [} “‘. IS [}
(o) ° [ J (o) ° (<) [0} ° o
for some small factor c. °e %o . ° %o . ° %o .
(o] (o) (o] (o) [ J (o)




pictures: two-stage and multi-stage

In each stage, the probability
distribution 7 is
progressively refined

And the costs change.
Usually they increase...

stage lll scenarios



another example: facility location

Input: Metric space

@
node set R of clients o @ o @
facility costs f, for each node v o @ o ., @
@ @
3

Output: node set F of facilities

Minimize: e @ o
Zv inF fv + Zu in R diSt(U, F)

Facts: 1.50-approx [Byrka ‘07]
1.463-hard [Guha Khuller 98]



and the stochastic version

@
Initially facility at v costs f, @ @
® O O
o © ¢ ©0
Distribution 7 on tuples 7 = (R, f (7))
_ o © ® @
= random node set R of clients o © ()
= facility costs f (7) in this scenario @ ° @
@
Monday: buy facilities F,, ¢ “ ®
@ ® o

Tuesday: scenario 7 drawn from 7
buy some more facilities F(7)

minimize:

Zvin Fm fv + E7'<— ™ [ Z:vin FT fv(T) + Z:u inR diSt(U, FM U FT) ]



complexity?

Stochastic discrete optimization problems can be solved
using Mixed Integer Program formulations

*" no poly-time algorithms unless P=NP.

Also, stochastic problems are harder than deterministic ones
= E.g., many 2-stage stochastic versions of Shortest paths are NP-hard.
= Two-stage stochastic linear programming is #P-hard.



backgrounda)

Scheduling with stochastic data
=  Substantial work [Pinedo "95]

= Also on approximation algorithms
[M6hring Schulz Uetz, Skutella & Uetz, Scharbrodt et al, Souza & Steger,...]

Approximation Algorithms

= Resource provisioning using LP rounding
[Dye Stougie Tomasgard; Nav. Res. Qtrly ‘03]

= Approximation for Steiner tree, facility location
[Immorlica Karger Minkoff Mirrokni SODA ’'04]

= Facility location, vertex cover, etc using LP rounding
[Ravi Sinha IPCO '04]



background2)

Main citations relevant to this talk:

The “Boosted Sampling” approach:

two-stage problems [Gupta Pal Ravi Sinha, STOC '04]
multistage problems [Gupta Pal Ravi Sinha, APPROX '05]
both reduce
_ . o stochastic case
Solving and Rounding stochastic linear programs: - to
two stage problems [Shmoys Swamy, FOCS '04] deterministic case
. in different ways
multistage problems [Shmoys Swamy, FOCS ’05] Y



recap: two stage

= Given probability distribution 7 over the second-stage data

= Two stages of decision-making.
= Monday: make anticipatory decisions based on 7

= Tuesday: make recourse decisions after seeing actual data.

= Minimize the expected cost incurred.



roadmap

example: stochastic vertex cover
(using LPs)

example: stochastic Steiner tree

(using “boosted sampling”)

comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



representations of 7

= “Explicit scenarios” model
= Complete listing of the sample space

= “Black box” access to probability distribution
= generates an independent random sample from 7

= Also, independent decisions
" Each vertex v appears with probability p,, indep. of others.



vertex cover

vertex cover = set of vertices that hit all edges.

"  Finding minimum cost vertex cover is NP-hard.
2-approx: several algorithms
easy one: solve the linear program relaxation and round



integer-program formulation

Boolean variable x(v) = 1 iff vertex v chosen in the vertex cover

minimize 2. , c(v) x(v)
subject to
x(v) +x(w) 21  for each edge (v,w) in edge set E
and
x’s are in {0,1}



stochastic vertex cover

Explicit scenario model:

VI scenarios explicitly listed.
Edge set E, appears with prob. p,

Vertex costs c(v) on Monday, c,(v) on
Tuesday if scenario k appears.

Pick V, on Monday, V, on Tuesday ° o
such that (V, U V,) covers E,. °

Minimize c(V,) + E, [ ¢, (V,) ] 6, =0.1 b, =0.6 0,=0.3



integer-program formulation

Boolean variable x(v) = 1 iff vchosen on Monday,
v (v) = 1iff v chosen on Tuesday if scenario k realized

minimize 2., c(v) x(v) + 2 . P [ 2, € (V) Vi (V) ]
subject to
[x(v) + vy (v)]+[x(w)+yl(w)] 21 foreachk, edge (v,w) in E,
and
X’s, y’s are Boolean



linear-program relaxation

minimize 2., c(v) x(v) + 2 . P [ 2, € (V) Vi (V) ]
subject to
[ x(v) + vy (v)]+[x(w)+y(w)] 21 foreachk, edge (v,w) in E,

Now choose Vy={v | x(v) 2%}, and V, ={v | y,(v) 2% }

We are increasing variables by factor of 4
— we get a 4-approximation

Note: if we have explicit multi-stage solution with k stages, gives 2k approximation



solving the LP and rounding

" This idea useful for many stochastic problems
= Set cover, Facility location, some cut problems

" Tricky when the sample space is exponentially large
= exponential number of variables and constraints

= natural (non-trivial) approaches have run-times depending on the
variance of the problem...

= Shmoys and Swamy approach:
= consider this doubly-exponential vertex cover LP in black-box model
= can approximate it arbitrarily well, smaller run-times.
= solution has exponential size,
but we need only polynomially-large parts of it at a time.



roadmap

example: stochastic vertex cover
(using LPs)

example: stochastic Steiner tree

(using “boosted sampling”)

comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



two-

Stage | (“Monday”)

Pick some set of edges E,,
at cost,,(e) for each edge e

Stage Il (“Tuesday”)
Random set R is drawn from 7

Pick some edges E;; so that
E\ U E;g connects R to root

Objective Function:
COStM (EM) + E7r [ COStT,R (ET,R) ]

stage Steiner tree

Distribution 7 given as black-box

inflation A,z = costc(e)

cost,, (e)




simplifying assumption

“Proportional costs”

= On Tuesday, inflation for all edges is a fixed factor .
i.e., there is some A such that cost;(e) = A costy, (e).

= Results generalize to case when inflation A, depends on scenario,
but still same for all edges.

= |f different edges have different inflation,
Steiner tree problem much harder to approximate.

Bottom line: every edge costs exactly A times more on Tuesday

Objective Function: cy(Ey) + AE, [ cy(Erg) |



boosted sampling algorithm

= Sample from the distribution 7 of clients A times

= Letsampled set be S L
inflation factor

= Build minimum spanning tree T,on S U root

= Recall: MST is a 2-approximation to Minimum Steiner tree

= 2ndstage: actual client set R realized

= Extend T, with some edgesin T, so as to span R

Theorem: 4-approximation to Stochastic Steiner Tree



Algorithm: lllustration

Input, with A=3
@
@ @
= Sample A times from client ® @ (0]
distribution e © o ©60
@ @
o @ ® o
= BuildMSTT,onS © o0 °
@
o e " o
= When actual scenario R is ®
realized, extend T,to span Rin a e ® o

min cost way



the analysis

= 15t stage: Sample from the distribution of clients A times

" Build minimum spanning tree T, on S U root

= 2"dgstage: actual client set R realized

= Extend T, with some edges in T, so as to span R

Proof Strategy: OPT = ¢(T,) + E,[A- C(TEE

S

= E[Cost(1% stage)] < 2 x OPT
= E[Cost(2"9 stage)] < 2 x OPT




Analysis of 15t stage cost

Claim 1: E[cost(T,) < 2 x OPT

Proof: Our A samples: 5=5, US, U... US,

k k .
If we take 1, and all the 1’ - from OPT’s solution,
0 . . SJ .
we get a feasible solution for a Steiner tree on S U root.

An MST on S costs at most 2 times this Steiner tree.

31



Analysis of 15 stage costformal)

= Let OPT :C(TO*)+Z P, -A-c(Ty)
X
= Claim: E[c(T,)]<2.0PT

* OurAsamples: S={S, S,,...,S;}
MST (S) < 2{c(Ty ) +c(Tg ) +...+c(Tg, )}
E[MST (S)] < 2{c(T, )+ E[c( 'Sj )]+...+ E[C(TSZ )]}
= 2{c(Ty) + AE, [c(T)I}




the analysis

= 15t stage: Sample from the distribution of clients A times

" Build minimum spanning tree T, on S U root

= 2"dgstage: actual client set R realized

= Extend T, with some edges in T, so as to span R

Proof Strategy: OPT = ¢(T,) + E,[A- C(TEE

S

= E[Cost(1% stage)] < 2 x OPT
= E[Cost(2"9 stage)] < 2 x OPT




a “cost sharing” scheme for MST

Associate each node v with its parent edge pe,

1. [“Budget Balance”] root

cost of MST(S) =2, . < c(pe,).

2. [“Late-comers OK”]
If S=B U G, then
spanning-tree(B) U {pe, | v € G} spans S.



|II

a useful “cost sharing” scheme

Associate each node v with its parent edge pe,,

1. [“Budget Balance”] root

cost of MST(S) =2, . < c(pe,).

2. [“Late-comers OK”]
If S=B U G, then
spanning-tree(B) U {pe, | v € G} spans S.



|II

a useful “cost sharing” scheme

Associate each node v with its parent edge pe,

1. [“Budget Balance”] root

cost of MST(S) =2, . < c(pe,).

2. [“Late-comers OK”]
If S=B U G, then
spanning-tree(B) U {pe, | v € G} spans S.

Let pe(X) = {pe, | v € X}.



Analysis of 2"d stage cost

= Consider this:

take A+1 samples from the distribution, instead of A

= E[Cost of MST on these A+1 samples] < 2(A +)\1) OPT

= Pick one sample at random, call it real terminal set R.
Others A samples are S, S,, ..., Sy withS=U'S;

Expected cost of pe(R) < MST}\(E ;J s) < 2 OAPT




Analysis of 2"d stage cost

Expected cost of pe(R) < 20—)\"7

But pe(R) W MST(S) is a feasible Steiner tree for R.
=> buying pe(R) is a feasible action for the second stage!

Hence, E[cost of second stage] < E[A c(pe(R))] < 2 OPT.



Recap

Algorithm for Stochastic Steiner Tree:
= 15t stage: Sample A times, build MST
= 2Mdstage: Extend MST to realized clients

Theorem: Boosted-Sample is a 4-approximation to
Stochastic Steiner Tree.

Other problems like Facility location, Vertex cover, also have
such sampling based algorithms

= Require analogous notions of cost-shares for these problems

= we call these “strict” cost-shares.



roadmap

example: stochastic vertex cover
(using LPs)

example: stochastic Steiner tree

(using “boosted sampling”)

comparison between the two general approaches:
boosted sampling vs. LP-based approaches.



a quick comparison

Boosted Sampling Shmoys-Swamy
= combinatorial " convex programming-based
" require X samples " require more samples

= cost-shares: “primal-dual”? @ = primal-only techniques

= only proportional costs = general cost structure



last slide...

= This was perhaps the simplest model, still interesting results
= what about algorithms for other models?

= Can we improve the approximation bounds
given by these algorithms?

= s stochastic Steiner tree actually harder than
its deterministic variant?

= Which other problems can be solved in this model?

= Not known how to solve set cover using boosted sampling.



