Approximation Algorithms for Stochastic Combinatorial

 Optimization

 Optimization}

Part I: Two stage problems

Anupam Gupta
Carnegie Mellon University

stochastic optimization

Question: How to model uncertainty in the inputs?

- data may not yet be available
- obtaining exact data is difficult/expensive/time-consuming

Goal: make (near)-optimal decisions given some predictions (probability distribution on potential inputs).

Studied since the 1950s, and for good reason: many practical applications...

Approximation Algorithms

Recent development of approximation algorithms for NP-hard stochastic optimization problems.

I will give an overview of some of the results/ideas in the talks today and tomorrow.

models with recourse

The problem instance is revealed in "stages"

- initially we perform some anticipatory actions
- at each stage, more information released
- we may take some more recourse actions at this point

Initially, given "guesses" about final problem instance (i.e., given probability distribution π over problem instances)

Want to minimize:
Cost(Initial actions) $+\mathrm{E}_{\pi}$ [cost of recourse actions]

the Steiner tree problem

Input: a metric space
a root vertex r
a subset R of terminals

Output: a tree T connecting R to r of minimum length/cost.

Facts: NP-hard

MST is a 2-approximation $\operatorname{cost}(\operatorname{MST}(R \cup r)) \leq 2$ OPT (R)
[Robins Zelikovsky '99] gave a 1.55-approximation

"two-stage" Steiner tree

The Model:

Instead of one set R, we are given probability distribution π over subsets of nodes.
E.g., each node v independently belongs to R with probability p_{v}

Or, may be explicitly defined over a small set of "scenarios"

"two-stage" Steiner tree

Stage II ("Monday")
Pick some set of edges E_{M} at $\operatorname{cost}_{M}(e)$ for each edge e

Stage III ("Tuesday")

Objective Function:

$$
\operatorname{cost}_{M}\left(\mathrm{E}_{\mathrm{M}}\right)+\mathrm{E}_{\pi}\left[\operatorname{cost}_{\mathrm{T}, \mathrm{R}}\left(\mathrm{E}_{\mathrm{T}, \mathrm{R}}\right)\right]
$$

approximation algorithm

Objective Function:
$\operatorname{cost}_{M}\left(\mathrm{E}_{\mathrm{M}}\right)+\mathrm{E}_{\pi}\left[\operatorname{cost}_{\mathrm{T}, \mathrm{R}}\left(\mathrm{E}_{\mathrm{T}, \mathrm{R}}\right)\right]$

Optimum:
Sets $\mathrm{E}_{\mathrm{M}}{ }^{*}$ and $\mathrm{E}_{\mathrm{T}, \mathrm{R}}{ }^{*}$ which achieve expected cost Z^{*}

A c-approximation:
Find sets E_{M} and $\mathrm{E}_{\mathrm{T}, \mathrm{R}}$ that achieve expected cost c. Z* *
for some small factor c .

pictures: two-stage and multi-stage

In each stage, the probability distribution π is progressively refined

And the costs change.
Usually they increase...

another example: facility location

Input: Metric space node set R of clients facility costs f_{v} for each node v

Output: node set F of facilities

Minimize:

$$
\sum_{v \text { in } F} f_{v}+\sum_{u \text { in } R} \operatorname{dist}(u, F)
$$

Facts: 1.50-approx [Byrka '07]
1.463-hard [Guha Khuller '98]

and the stochastic version

Initially facility at v costs f_{v}

Distribution π on tuples $\tau=\left(\mathrm{R}, \mathrm{f}_{\mathrm{v}}(\tau)\right)$

- random node set R of clients
- facility costs $\mathrm{f}_{\mathrm{v}}(\tau)$ in this scenario

Monday: buy facilities F_{M}

Tuesday: scenario τ drawn from π buy some more facilities $\mathrm{F}_{\mathrm{T}}(\tau)$
minimize:

$$
\sum_{\mathrm{vinFM}} f_{v}+\mathbf{E}_{\tau \leftarrow \pi}\left[\sum_{\mathrm{vinFT}} \mathrm{f}_{\mathrm{v}}(\tau)+\sum_{\mathrm{uinR}} \operatorname{dist}\left(\mathrm{u}, \mathrm{~F}_{\mathrm{M}} \cup \mathrm{~F}_{\mathrm{T}}\right)\right]
$$

complexity?

- Stochastic discrete optimization problems can be solved using Mixed Integer Program formulations
- no poly-time algorithms unless $\mathrm{P}=\mathrm{NP}$.
- Also, stochastic problems are harder than deterministic ones
- E.g., many 2-stage stochastic versions of Shortest paths are NP-hard.
- Two-stage stochastic linear programming is \#P-hard.

background(1)

Scheduling with stochastic data

- Substantial work [Pinedo '95]
- Also on approximation algorithms
[Möhring Schulz Uetz, Skutella \& Uetz, Scharbrodt et al, Souza \& Steger,...]

Approximation Algorithms

- Resource provisioning using LP rounding
[Dye Stougie Tomasgard; Nav. Res. Qtrly '03]
- Approximation for Steiner tree, facility location
[Immorlica Karger Minkoff Mirrokni SODA '04]
- Facility location, vertex cover, etc using LP rounding
[Ravi Sinha IPCO '04]

background(2)

Main citations relevant to this talk:

The "Boosted Sampling" approach:
two-stage problems
multistage problems
[Gupta Pal Ravi Sinha, STOC '04]
[Gupta Pal Ravi Sinha, APPROX '05]

Solving and Rounding stochastic linear programs:
two stage problems
multistage problems
[Shmoys Swamy, FOCS '04]
[Shmoys Swamy, FOCS '05]
both reduce
stochastic case
to
deterministic case in different ways

recap: two stage

- Given probability distribution π over the second-stage data
- Two stages of decision-making.
- Monday: make anticipatory decisions based on π
- Tuesday: make recourse decisions after seeing actual data.
- Minimize the expected cost incurred.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

representations of π

- "Explicit scenarios" model
- Complete listing of the sample space
- "Black box" access to probability distribution
- generates an independent random sample from π
- Also, independent decisions
- Each vertex v appears with probability p_{v} indep. of others.

vertex cover

vertex cover = set of vertices that hit all edges.

- Finding minimum cost vertex cover is NP-hard.

2-approx: several algorithms
easy one: solve the linear program relaxation and round

integer-program formulation

Boolean variable $x(v)=1$ iff vertex v chosen in the vertex cover
minimize $\sum_{\mathrm{v}} \mathrm{c}(\mathrm{v}) \mathrm{x}(\mathrm{v})$
subject to

$$
x(v)+x(w) \geq 1 \quad \text { for each edge }(v, w) \text { in edge set } E
$$

and

$$
\text { x's are in }\{0,1\}
$$

stochastic vertex cover

Explicit scenario model:
M scenarios explicitly listed.
Edge set E_{k} appears with prob. p_{k}

Vertex costs c(v) on Monday, $c_{k}(v)$ on
Tuesday if scenario k appears.

Pick V_{0} on Monday, V_{k} on Tuesday such that $\left(V_{0} \cup V_{k}\right)$ covers E_{k}.

Minimize $c\left(V_{0}\right)+E_{k}\left[c_{k}\left(V_{k}\right)\right]$

$p_{1}=0.1$

$p_{2}=0.6$

$\mathrm{p}_{3}=0.3$

integer-program formulation

Boolean variable $x(v)=1$ iff v chosen on Monday,
$y_{k}(v)=1$ iff v chosen on Tuesday if scenario k realized
$\operatorname{minimize} \sum_{v} c(v) x(v)+\sum_{k} p_{k}\left[\sum_{v} c_{k}(v) y_{k}(v)\right]$
subject to

$$
\left[x(v)+y_{k}(v)\right]+\left[x(w)+y_{k}(w)\right] \geq 1 \text { for each } k \text {, edge }(v, w) \text { in } E_{k}
$$

and
x 's, y's are Boolean

linear-program relaxation

minimize $\sum_{v} c(v) \times(v)+\sum_{k} p_{k}\left[\sum_{v} c_{k}(v) y_{k}(v)\right]$
subject to

$$
\begin{aligned}
& {\left[x(v)+y_{k}(v)\right]+\left[x(w)+y_{k}(w)\right] \geq 1 \text { for each } k \text {, edge }(v, w) \text { in } E_{k}} \\
& \text { Now choose } v_{0}=\{v \mid x(v) \geq 1 / 4\} \text {, and } v_{k}=\left\{v \mid y_{k}(v) \geq 1 / 4\right\}
\end{aligned}
$$

We are increasing variables by factor of 4
\Rightarrow we get a 4-approximation
Note: if we have explicit multi-stage solution with k stages, gives 2 k approximation

solving the LP and rounding

- This idea useful for many stochastic problems
- Set cover, Facility location, some cut problems
- Tricky when the sample space is exponentially large
- exponential number of variables and constraints
- natural (non-trivial) approaches have run-times depending on the variance of the problem...
- Shmoys and Swamy approach:
- consider this doubly-exponential vertex cover LP in black-box model
- can approximate it arbitrarily well, smaller run-times.
- solution has exponential size, but we need only polynomially-large parts of it at a time.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

two-stage Steiner tree

Stage II ("Monday")
Pick some set of edges E_{M} at $\operatorname{cost}_{M}(e)$ for each edge e

Stage II ("Tuesday")
Random set R is drawn from π
Pick some edges $\mathrm{E}_{\mathrm{T}, \mathrm{R}}$ so that $E_{M} \cup E_{T, R}$ connects R to root

Distribution π given as black-box
Objective Function:

$$
\operatorname{cost}_{M}\left(\mathrm{E}_{\mathrm{M}}\right)+\mathrm{E}_{\pi}\left[\operatorname{cost}_{\mathrm{T}, \mathrm{R}}\left(\mathrm{E}_{\mathrm{T}, \mathrm{R}}\right)\right]
$$

$$
\text { inflation } \lambda_{e, \mathrm{R}}=\frac{\operatorname{cost}_{\mathrm{T}, \mathrm{R}}(\mathrm{e})}{\operatorname{cost}_{\mathrm{M}}(\mathrm{e})}
$$

simplifying assumption

"Proportional costs"

- On Tuesday, inflation for all edges is a fixed factor λ. i.e., there is some λ such that $\operatorname{cost}_{T, R}(e)=\lambda \operatorname{cost}_{M}(e)$.
- Results generalize to case when inflation λ_{R} depends on scenario, but still same for all edges.
- If different edges have different inflation, Steiner tree problem much harder to approximate.

Bottom line: every edge costs exactly λ times more on Tuesday
Objective Function: $\mathrm{C}_{\mathrm{M}}\left(\mathrm{E}_{\mathrm{M}}\right)+\lambda \mathrm{E}_{\pi}\left[\mathrm{C}_{\mathrm{M}}\left(\mathrm{E}_{\mathrm{T}, \mathrm{R}}\right)\right]$

boosted sampling algorithm

- Sample from the distribution π of clients λ times
- Let sampled set be S
- Build minimum spanning tree T_{0} on $S \cup$ root
- Recall: MST is a 2-approximation to Minimum Steiner tree
- $2^{\text {nd }}$ stage: actual client set R realized
- Extend T_{0} with some edges in T_{R} so as to span R

Theorem: 4-approximation to Stochastic Steiner Tree

Algorithm: Illustration

Input, with $\lambda=3$

- Sample $\boldsymbol{\lambda}$ times from client distribution
- Build MST T_{0} on S
- When actual scenario R is realized, extend T_{0} to span R in a
 min cost way

the analysis

- $1^{\text {st }}$ stage: Sample from the distribution of clients λ times
- Build minimum spanning tree T_{0} on $S \cup$ root
- $2^{\text {nd }}$ stage: actual client set R realized
- Extend T_{0} with some edges in T_{R} so as to span R

Proof Strategy:

$$
\mathrm{OPT}=c\left(T_{0}^{*}\right)+E_{\pi}\left[\lambda \cdot c\left(T_{R}^{*}\right)\right]
$$

- $\mathrm{E}\left[\operatorname{Cost}\left(1^{\text {st }}\right.\right.$ stage $\left.)\right] \leq 2 \times$ OPT
- $\mathbf{E}\left[\operatorname{Cost}\left(2^{\text {nd }}\right.\right.$ stage $\left.)\right] \leq 2 \times$ OPT

Analysis of $1^{\text {st }}$ stage cost

Claim 1: $\mathrm{E}\left[\operatorname{cost}\left(\mathrm{T}_{0}\right) \leq 2 \times\right.$ OPT

Proof: Our λ samples: $S=S_{1} \cup S_{2} \cup \ldots \cup S_{\lambda}$
If we take T_{0}^{*} and all the $T_{S_{j}}^{*}$ from OPT's solution, we get a feasible solution for a Steiner tree on $S \cup$ root.

An MST on S costs at most 2 times this Steiner tree.

Analysis of $1^{\text {st }}$ stage cost(formal)

- Let $O P T=c\left(T_{0}^{*}\right)+\sum_{X} p_{X} \cdot \lambda \cdot c\left(T_{X}^{*}\right)$
- Claim: $E\left[c\left(T_{0}\right)\right] \leq 2 . O P T$
- Our λ samples: $S=\left\{S_{1}, S_{2}, \ldots, S_{\lambda}\right\}$

$$
\operatorname{MST}(S) \leq 2\left\{c\left(T_{0}^{*}\right)+c\left(T_{S_{1}}^{*}\right)+\ldots+c\left(T_{S_{\imath}}^{*}\right)\right\}
$$

$E[\operatorname{MST}(S)] \leq 2\left\{c\left(T_{0}^{*}\right)+E\left[c\left(T_{S_{1}}^{*}\right)\right]+\ldots+E\left[c\left(T_{S_{\lambda}}^{*}\right)\right]\right\}$

$$
=2\left\{c\left(T_{0}^{*}\right)+\lambda E_{X}\left[c\left(T_{X}^{*}\right)\right]\right\}
$$

the analysis

- $1^{\text {st }}$ stage: Sample from the distribution of clients λ times
- Build minimum spanning tree T_{0} on $S \cup$ root
- $2^{\text {nd }}$ stage: actual client set R realized
- Extend T_{0} with some edges in T_{R} so as to span R

Proof Strategy:

$$
\mathrm{OPT}=c\left(T_{0}^{*}\right)+E_{\pi}\left[\lambda \cdot c\left(T_{R}^{*}\right)\right]
$$

- $\mathrm{E}\left[\operatorname{Cost}\left(1^{\text {st }}\right.\right.$ stage $\left.)\right] \leq 2 \times$ OPT
- $\mathbf{E}\left[\operatorname{Cost}\left(2^{\text {nd }}\right.\right.$ stage $\left.)\right] \leq 2 \times$ OPT

a "cost sharing" scheme for MST

Associate each node v with its parent edge pe_{v}

1. ["Budget Balance"] cost of MST(S) $=\sum_{v \in S} c\left(p e_{v}\right)$.
2. ["Late-comers OK"]

If $S=B \cup G$, then
spanning-tree $(B) \cup\left\{p e_{v} \mid v \in G\right\}$ spans S.

a useful "cost sharing" scheme

Associate each node v with its parent edge pe_{v}

1. ["Budget Balance"] cost of MST(S) $=\Sigma_{v \in S} c\left(p e_{v}\right)$.
2. ["Late-comers OK"]

If $S=B \cup G$, then spanning-tree $(B) \cup\left\{\right.$ pe $\left._{v} \mid v \in G\right\}$ spans S.

a useful "cost sharing" scheme

Associate each node v with its parent edge pe_{v}

1. ["Budget Balance"] cost of MST(S) $=\sum_{v \in S} c\left(p e{ }_{v}\right)$.
2. ["Late-comers OK"]

If $S=B \cup G$, then spanning-tree $(B) \cup\left\{\right.$ pe $\left._{\mathrm{v}} \mid \mathrm{v} \in \mathrm{G}\right\}$ spans S.

Let $p e(X)=\left\{\operatorname{pe}_{v} \mid v \in X\right\}$.

Analysis of $2^{\text {nd }}$ stage cost

- Consider this:
take $\lambda+1$ samples from the distribution, instead of λ
- $E[$ Cost of MST on these $\lambda+1$ samples $] \leq \frac{2(\lambda+1) \text { OPT }}{\lambda}$
- Pick one sample at random, call it real terminal set R. Others λ samples are $S_{1}, S_{2}, \ldots, S_{\lambda}$ with $S=\cup S_{j}$

Expected cost of $\mathrm{pe}(\mathrm{R}) \leq \frac{\mathrm{MST}(\mathrm{R} \cup \mathrm{S})}{\lambda+1} \leq \frac{2 \text { OPT }}{\lambda}$

Analysis of $2^{\text {nd }}$ stage cost

Expected cost of $\mathrm{pe}(\mathrm{R}) \leq \frac{2 \text { OPT }}{\lambda}$

But pe $(R) \cup M S T(S)$ is a feasible Steiner tree for R.
\Rightarrow buying pe (R) is a feasible action for the second stage!

Hence, $\mathrm{E}[$ cost of second stage $] \leq \mathrm{E}[\boldsymbol{\lambda} c(\mathrm{pe}(\mathrm{R}))] \leq 2$ OPT.

- Algorithm for Stochastic Steiner Tree:
- $1^{\text {st }}$ stage: Sample λ times, build MST
- $2^{\text {nd }}$ stage: Extend MST to realized clients
- Theorem: Boosted-Sample is a 4-approximation to Stochastic Steiner Tree.
- Other problems like Facility location, Vertex cover, also have such sampling based algorithms
- Require analogous notions of cost-shares for these problems
- we call these "strict" cost-shares.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

a quick comparison

Boosted Sampling

- combinatorial
- require λ samples
- cost-shares: "primal-dual"?
- only proportional costs

Shmoys-Swamy

- convex programming-based
- require more samples
- primal-only techniques
- general cost structure

last slide...

- This was perhaps the simplest model, still interesting results
- what about algorithms for other models?
- Can we improve the approximation bounds given by these algorithms?
- is stochastic Steiner tree actually harder than its deterministic variant?
- Which other problems can be solved in this model?
- Not known how to solve set cover using boosted sampling.

