Approximation Algorithms for Stochastic Combinatorial Optimization

Part I: Two stage problems

Anupam Gupta
Carnegie Mellon University

stochastic optimization

Question: How to model uncertainty in the inputs?

- data may not yet be available
- obtaining exact data is difficult/expensive/time-consuming

Goal: make (near)-optimal decisions given some predictions (probability distribution on potential inputs).

Studied since the 1950s, and for good reason: many practical applications...

Approximation Algorithms

Recent development of **approximation algorithms** for NP-hard stochastic optimization problems.

I will give an overview of some of the results/ideas in the talks today and tomorrow.

models with recourse

The problem instance is revealed in "stages"

- initially we perform some anticipatory actions
- at each stage, more information released
- we may take some more recourse actions at this point

Initially, given "guesses" about final problem instance

(i.e., given probability distribution π over problem instances)

Want to minimize:

Cost(Initial actions) + E_{π} [cost of recourse actions]

the Steiner tree problem

Input: a metric space

a root vertex r

a subset R of terminals

Output: a tree T connecting R to r of minimum length/cost.

Facts: NP-hard

MST is a 2-approximation $cost(MST(R \cup r)) \le 2 OPT(R)$

[Robins Zelikovsky '99] gave a 1.55-approximation

"two-stage" Steiner tree

The Model:

Instead of one set R, we are given probability distribution π over subsets of nodes.

E.g., each node v independently belongs to R with probability p_v

Or, may be explicitly defined over a small set of "scenarios"

"two-stage" Steiner tree

Stage I ("Monday")

Pick some set of edges E_M at $cost_M(e)$ for each edge e

Stage II ("Tuesday")

Random set R is drawn from π Pick some edges $E_{T,R}$ so that $E_M \cup E_{T,R}$ connects R to root cost change to $cost_{T,R}$ (e)

Objective Function:

$$cost_{M} (E_{M}) + \mathbf{E}_{\pi} [cost_{T,R} (E_{T,R})]$$

approximation algorithm

Objective Function:

$$cost_{M} (E_{M}) + \mathbf{E}_{\pi} [cost_{T,R} (E_{T,R})]$$

Optimum:

Sets E_M* and E_{T,R}* which achieve expected cost Z*

A c-approximation:

Find sets E_M and $E_{T,R}$ that achieve expected cost c.Z*

for some small factor c.

pictures: two-stage and multi-stage

In each stage, the probability distribution π is progressively refined

And the costs change.
Usually they increase...

another example: facility location

Input: Metric space node set R of clients facility costs f_v for each node v

Output: node set F of facilities

Minimize:

$$\sum_{v \text{ in F}} f_v + \sum_{u \text{ in R}} dist(u, F)$$

Facts: 1.50-approx [Byrka '07] 1.463-hard [Guha Khuller '98]

and the stochastic version

Initially facility at v costs f_v

Distribution π on tuples $\tau = (R, f_v(\tau))$

- random node set R of clients
- facility costs $f_v(\tau)$ in this scenario

Monday: buy facilities F_M

Tuesday: scenario τ drawn from π buy some more facilities $F_{\tau}(\tau)$

minimize:

$$\sum_{\text{v in FM}} f_{\text{v}} + \mathbf{E}_{\tau \leftarrow \pi} \left[\sum_{\text{v in FT}} f_{\text{v}}(\tau) + \sum_{\text{u in R}} \text{dist(u, F}_{\text{M}} \cup F_{\text{T}}) \right]$$

complexity?

- Stochastic discrete optimization problems can be solved using Mixed Integer Program formulations
 - no poly-time algorithms unless P=NP.

- Also, stochastic problems are harder than deterministic ones
 - E.g., many 2-stage stochastic versions of Shortest paths are NP-hard.
 - Two-stage stochastic linear programming is #P-hard.

background(1)

Scheduling with stochastic data

- Substantial work [Pinedo '95]
- Also on approximation algorithms
 [Möhring Schulz Uetz, Skutella & Uetz, Scharbrodt et al, Souza & Steger,...]

Approximation Algorithms

- Resource provisioning using LP rounding
 - [Dye Stougie Tomasgard; Nav. Res. Qtrly '03]
- Approximation for Steiner tree, facility location
 - [Immorlica Karger Minkoff Mirrokni SODA '04]
- Facility location, vertex cover, etc using LP rounding
 - [Ravi Sinha IPCO '04]

background(2)

Main citations relevant to this talk:

The "Boosted Sampling" approach:

two-stage problems [Gupta Pal Ravi Sinha, STOC '04]

multistage problems [Gupta Pal Ravi Sinha, APPROX '05]

Solving and Rounding stochastic linear programs:

two stage problems [Shmoys Swamy, FOCS '04]

multistage problems [Shmoys Swamy, FOCS '05]

both reduce stochastic case to deterministic case in different ways

recap: two stage

- Given probability distribution π over the second-stage data
- Two stages of decision-making.
 - lacktriangle Monday: make anticipatory decisions based on π
 - Tuesday: make recourse decisions after seeing actual data.
- Minimize the expected cost incurred.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

representations of π

- "Explicit scenarios" model
 - Complete listing of the sample space
- "Black box" access to probability distribution
 - lacktriangle generates an independent random sample from π
- Also, independent decisions
 - Each vertex v appears with probability p_v indep. of others.

vertex cover

vertex cover = set of vertices that hit all edges.

Finding minimum cost vertex cover is NP-hard.

2-approx: several algorithms

easy one: solve the linear program relaxation and round

integer-program formulation

Boolean variable x(v) = 1 iff vertex v chosen in the vertex cover

```
minimize \sum_{v} c(v) x(v)

subject to

x(v) + x(w) \ge 1 for each edge (v,w) in edge set E

and

x's are in \{0,1\}
```

stochastic vertex cover

Explicit scenario model:

M scenarios explicitly listed. Edge set E_k appears with prob. p_k

Vertex costs c(v) on Monday, $c_k(v)$ on Tuesday if scenario k appears.

Pick V_0 on Monday, V_k on Tuesday such that $(V_0 \cup V_k)$ covers E_k .

Minimize $c(V_0) + E_k [c_k(V_k)]$

integer-program formulation

```
Boolean variable x(v) = 1 iff v chosen on Monday,

y_k(v) = 1 iff v chosen on Tuesday if scenario k realized
```

```
minimize \sum_{v} c(v) x(v) + \sum_{k} p_{k} [\sum_{v} c_{k}(v) y_{k}(v)]

subject to [x(v) + y_{k}(v)] + [x(w) + y_{k}(w)] \ge 1 \text{ for each } k, \text{ edge } (v,w) \text{ in } E_{k}
and x's, y's \text{ are Boolean}
```

linear-program relaxation

```
minimize \sum_{v} c(v) x(v) + \sum_{k} p_{k} \left[ \sum_{v} c_{k}(v) y_{k}(v) \right]

subject to  \left[ x(v) + y_{k}(v) \right] + \left[ x(w) + y_{k}(w) \right] \ge 1 \text{ for each } k, \text{ edge } (v,w) \text{ in } E_{k} 
Now choose V_{0} = \{ v \mid x(v) \ge \frac{1}{4} \}, and V_{k} = \{ v \mid y_{k}(v) \ge \frac{1}{4} \}
```

We are increasing variables by factor of 4

 \Rightarrow we get a 4-approximation

Note: if we have explicit multi-stage solution with k stages, gives 2k approximation

solving the LP and rounding

- This idea useful for many stochastic problems
 - Set cover, Facility location, some cut problems
- Tricky when the sample space is exponentially large
 - exponential number of variables <u>and</u> constraints
 - natural (non-trivial) approaches have run-times depending on the variance of the problem...
- Shmoys and Swamy approach:
 - consider this doubly-exponential vertex cover LP in black-box model
 - can approximate it arbitrarily well, smaller run-times.
 - solution has exponential size,
 but we need only polynomially-large parts of it at a time.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

two-stage Steiner tree

Stage I ("Monday")

Pick some set of edges E_M at $cost_M(e)$ for each edge e

Stage II ("Tuesday")

Random set R is drawn from π Pick some edges $E_{T,R}$ so that $E_M \cup E_{T,R}$ connects R to root

Objective Function:

$$cost_{M} (E_{M}) + \mathbf{E}_{\pi} [cost_{T,R} (E_{T,R})]$$

Distribution π given as black-box

inflation
$$\lambda_{e,R} = \frac{\text{cost}_{T,R}(e)}{\text{cost}_{M}(e)}$$

simplifying assumption

"Proportional costs"

- On Tuesday, inflation for all edges is a fixed factor λ . i.e., there is some λ such that $cost_{T,R}(e) = \lambda cost_{M}(e)$.
- lacktriangle Results generalize to case when inflation λ_R depends on scenario, but still same for all edges.
- If different edges have different inflation,
 Steiner tree problem <u>much</u> harder to approximate.

Bottom line: every edge costs exactly λ times more on Tuesday

Objective Function: $c_{\mathbf{M}}(E_{\mathbf{M}}) + \lambda \mathbf{E}_{\pi} [c_{\mathbf{M}}(E_{TR})]$

boosted sampling algorithm

- Sample from the distribution π of clients λ times
 - Let sampled set be S

inflation factor

- Build minimum spanning tree T_0 on $S \cup root$
 - Recall: MST is a 2-approximation to Minimum Steiner tree
- 2nd stage: actual client set R realized
 - Extend T_0 with some edges in T_R so as to span R

Theorem: 4-approximation to Stochastic Steiner Tree

Algorithm: Illustration

Input, with λ =3

- Sample λ times from client distribution
- Build MST T_0 on S
- When actual scenario R is realized, extend T₀ to span R in a min cost way

the analysis

- 1st stage: Sample from the distribution of clients λ times
 - Build minimum spanning tree T_o on $S \cup root$
- 2nd stage: actual client set R realized
 - Extend T_0 with some edges in T_R so as to span R

Proof Strategy:

$$OPT = c(T_0^*) + E_{\pi}[\lambda \cdot c(T_R^*)]$$

- $\mathbf{E}[\text{Cost}(1^{\text{st}} \text{ stage})] \le 2 \times \text{OPT}$
- $E[Cost(2^{nd} stage)] \le 2 \times OPT$

Analysis of 1st stage cost

Claim 1: $\mathbf{E}[\text{cost}(T_0) \le 2 \times \text{OPT}]$

Proof: Our λ samples: $S = S_1 \cup S_2 \cup ... \cup S_{\lambda}$

If we take T_0^* and all the $T_{S_j}^*$ from OPT's solution, we get a feasible solution for a Steiner tree on S \cup root.

An MST on S costs at most 2 times this Steiner tree.

Analysis of 1st stage cost(formal)

• Let
$$OPT = c(T_0^*) + \sum_X p_X \cdot \lambda \cdot c(T_X^*)$$

• Claim: $E[c(T_0)] \le 2.OPT$

• Our λ samples: $S = \{S_1, S_2, ..., S_{\lambda}\}$

$$MST(S) \leq 2\{c(T_0^*) + c(T_{S_1}^*) + \dots + c(T_{S_{\lambda}}^*)\}$$

$$E[MST(S)] \leq 2\{c(T_0^*) + E[c(T_{S_1}^*)] + \dots + E[c(T_{S_{\lambda}}^*)]\}$$

$$= 2\{c(T_0^*) + \lambda E_x[c(T_x^*)]\}$$

the analysis

- 1st stage: Sample from the distribution of clients λ times
 - Build minimum spanning tree T_0 on $S \cup root$
- 2nd stage: actual client set R realized
 - Extend T_0 with some edges in T_R so as to span R

Proof Strategy:

$$OPT = c(T_0^*) + E_{\pi}[\lambda \cdot c(T_R^*)]$$

- $E[Cost(1^{st} stage)] \le 2 \times OPT$
- $\mathbf{E}[\text{Cost}(2^{\text{nd}} \text{ stage})] \le 2 \times \text{OPT}$

a "cost sharing" scheme for MST

root r

Associate each node v with its parent edge pe_v

- 1. ["Budget Balance"] cost of MST(S) = $\sum_{v \in S} c(pe_v)$.
- 2. ["Late-comers OK"]

 If $S = B \cup G$, then

 spanning-tree(B) $\cup \{pe_v \mid v \in G\}$ spans S.

a useful "cost sharing" scheme

root r

Associate each node v with its parent edge pe_v

- 1. ["Budget Balance"] cost of MST(S) = $\sum_{v \in S} c(pe_v)$.
- 2. ["Late-comers OK"]
 If S = B ∪ G, then
 spanning-tree(B) ∪ {pe_v | v ∈ G} spans S.

a useful "cost sharing" scheme

Associate each node v with its parent edge pe_v

- 1. ["Budget Balance"] cost of MST(S) = $\sum_{v \in S} c(pe_v)$.
- 2. ["Late-comers OK"]

 If $S = B \cup G$, then

 spanning-tree(B) $\cup \{pe_v \mid v \in G\}$ spans S.

Let
$$pe(X) = \{pe_v \mid v \in X\}.$$

Analysis of 2nd stage cost

- Consider this: take $\lambda+1$ samples from the distribution, instead of λ
- **E**[Cost of MST on these $\lambda+1$ samples] $\leq \frac{2(\lambda+1) \text{ OPT}}{\lambda}$
- Pick one sample at random, call it real terminal set R. Others λ samples are S_1 , S_2 , ..., S_{λ} with $S = \bigcup S_j$

Expected cost of pe(R)
$$\leq \frac{MST(R \cup S)}{\lambda + 1} \leq \frac{2 OPT}{\lambda}$$

Analysis of 2nd stage cost

Expected cost of pe(R)
$$\leq \frac{2 \text{ OPT}}{\lambda}$$

But $pe(R) \cup MST(S)$ is a feasible Steiner tree for R.

 \Rightarrow buying pe(R) is a feasible action for the second stage!

Hence, $\mathbf{E}[\text{cost of second stage}] \leq \mathbf{E}[\lambda \, c(\text{pe}(R))] \leq 2 \, \text{OPT}.$

Recap

- Algorithm for Stochastic Steiner Tree:
 - 1st stage: Sample λ times, build MST
 - 2nd stage: Extend MST to realized clients
- Theorem: Boosted-Sample is a 4-approximation to Stochastic Steiner Tree.
- Other problems like Facility location, Vertex cover, also have such sampling based algorithms
 - Require analogous notions of cost-shares for these problems
 - we call these "strict" cost-shares.

roadmap

- example: stochastic vertex cover (using LPs)
- example: stochastic Steiner tree (using "boosted sampling")
- comparison between the two general approaches: boosted sampling vs. LP-based approaches.

a quick comparison

Boosted Sampling

- combinatorial
- require λ samples
- cost-shares: "primal-dual"?
- only proportional costs

Shmoys-Swamy

- convex programming-based
- require more samples
- primal-only techniques
- general cost structure

last slide...

- This was perhaps the simplest model, still interesting results
 - what about algorithms for other models?
- Can we improve the approximation bounds given by these algorithms?
 - is stochastic Steiner tree actually harder than its deterministic variant?
- Which other problems can be solved in this model?
 - Not known how to solve set cover using boosted sampling.