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Talk Outline

Stochastic queueing networks and stability

Our model: Deterministic multiclass queueing
networks.

Detour into undecidability. Counter machines and
halting problem.

Main result:

Stability of multiclass queueing networks with
fininte and infinite buffers under static buffer priority
policies is undecidable.

Further work.




Stochastic Multiclass Queueing Network
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i.i.d. interarrival time with rates ),

i.i.d. service times with rates u;

Scheduling policy: FIFO, buffer priority, etc.
Stability: positive Harris recurrence. Informally,
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Stochastic Multiclass Queueing Network
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Necessary condition for stability: for every server
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Stochastic Multiclass Queueing Network

» Kumar & Seidman [1990], Lu & Kumar, Rybko & Stolyar [1991] Introduced
MQNET. First instability results.

* Bramson, Seidman [1994]. FIFO can be unstable.
« Dai, Stolyar [1995] Stability of a fluid model implies stability of MQNET.

» Bertsimas, G. & Tsitsiklis [1996], Classification of globally stable fluid 2-server
queueing networks.

« Dai & Vande Vate [2000], G. & Hasenbein. Classification of globally stable
stochastic 2-server queueing networks.

« Many more results ...

No constructive method for determining stability of a given MQNET/scheduling
policy is known



Our model: deterministic Multiclass Queueing Network

]

Deterministic interarrival time with rates );
Deterministic service times with rates p;
Scheduling policy: buffer priority

Additional feature: infinite/finite buffers

Stability: sups>o ||Q(®)| < o0




Main Result
Theorem. The following decision problem

“Given QNET topology/parameters/buffer priority rule (X, u, P, C,0)
determine whether the network is stable”

is undecidable.

Proof: reduction from the Counter Machine Halting Problem
Earlier work:
G. [2002]. Stability under generalized priority policy is undecidable.

G. [2006]. Computing stationary distribution and large deviations rates is
undecidable.



Detour into undecidability

 Alan Turing [1930’s]. Turing Machine and the Turing Halting Problem
» Classical undecidable problems:

Post Correspondence Problem,
Probabilistic Automata

« Godel’s Incompleteness Theorem

Undecidable problems in control theory

 Blondel, Bournez, Papadimitriu, Paterson, Tsitsiklis.

* Such as :
Joint spectral radius
Matrix mortality
Piece-wise affine control (uses Counter machines)
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Counter Machine

Updat% Table (example with 3 states)
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Counter Machine Halting Problem
Theorem. The following decision problem

“Given a starting configuration (s1,0,0) determine whether it is
eventually repeated”

is undecidable.

Corollary. “Stability” of a counter machine is undecidable.
Proof: reduction from the Turing Halting Problem.
Note: 1-counter machine is “decidable”.

Simplified counter machine: change in counters is a function of the state
only. Proof — simple reduction from a general counter machine.



Critical Rybko-Stolyar Network

OO&)O

* 5

g1

g2

poy = poy = 1/2

Q(0) = (0,n,0,0)




ork
Netw
ar
bko-Stoly

ical Ry

itica

Criti

* 5

g1

g2

=1/2
= po, =
Poq

0)
) =(0,0,n,
Q(n—




ork
Netw
ar
bko-Stoly

ical Ry

itica

Criti

* 5

g1

g2

=1/2
= po, =
Poq

n)
+) — (07 07 Oa
Q(n




Counter Machine to Queueing Network. Reduction




Counter subnetwork j=1,2.

Rybko-Stolyar Network: Queue(t)=Counter(t)

Adding/Subtracting
Mechanism
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Counter subnetwork j=1,2.
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Main network: state update 3k 1
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Extension: Skorohod mapping problem and stability

Z(t) = X(t) + RY (1),
/Zz-(t)dY;(t) —0, i=1,2,...,J
ZY >0,Y(0) =0,

Theorem. Williams et al. [1994]. Solution to the Skorohod problem exists iff R
is completely-S.

Theorem. Deciding whether a given Skorohod problem with a given initial
state has a stable solution is undecidable.

Proof: a counter machine with m states can be embedded into a Skorohod
mapping problem with J = 5m 4+ 9 in such a way that one step of the
counter machine corresponds to 5 steps of the Skorohod mapping.



Skorohod mapping problem and stability

Z(t) = X(t) + RY (1),
/Zi(t)dY;(t) —0, i=1,2,...,J
Z,Y >0,Y(0) =0,

Details: R has positive upper triangular part including the diagonal. As a
result it is completely-S.

Open: stability for arbitrary initial state.



Summary and future work

» Stability of queueing networks under priority type
scheduling policies with finite/infinite buffers is undecidable.

* Proof: reduction from some other “known” undecidable
problem (counter machine)

 Challenge: FIFO policy, infinite buffers, non-zero service
times




