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Talk Outline

• Stochastic queueing networks and stability

• Our model: Deterministic multiclass queueing

networks.

• Detour into undecidability. Counter machines and 

halting problem.

• Main result:

Stability of multiclass queueing networks with 

fininte and infinite buffers under static buffer priority 

policies is undecidable.

• Further work.
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Stochastic Multiclass Queueing Network

• Kumar & Seidman [1990], Lu & Kumar, Rybko & Stolyar [1991] Introduced 

MQNET. First instability results.

• Bramson, Seidman [1994]. FIFO can be unstable.

• Dai, Stolyar [1995] Stability of a fluid model implies stability of MQNET.

• Bertsimas, G. & Tsitsiklis [1996], Classification of globally stable fluid 2-server 

queueing networks.

• Dai & Vande Vate [2000], G. & Hasenbein. Classification of globally stable 

stochastic 2-server queueing networks.

• Many more results …

No constructive method for determining stability of a given MQNET/scheduling 

policy is known



Our model: deterministic Multiclass Queueing Network



Main Result

Theorem. The following decision problem

“Given QNET topology/parameters/buffer priority rule 

determine whether the network is stable’’

is undecidable.

Proof: reduction from the Counter Machine Halting Problem

Earlier work:

G. [2002]. Stability under generalized priority policy is undecidable. 

G. [2006]. Computing stationary distribution and large deviations rates is 

undecidable.



Detour into undecidability

• Alan Turing [1930’s]. Turing Machine and the Turing Halting Problem

• Classical undecidable problems: 

Post Correspondence Problem, 

Probabilistic Automata

• Godel’s Incompleteness Theorem

Undecidable problems in control theory

• Blondel, Bournez, Papadimitriu, Paterson, Tsitsiklis.  

• Such as : 

Joint spectral radius  

Matrix mortality

Piece-wise affine control (uses Counter machines)



Counter Machine

Counter 1.

Counter 2.

States

Update Table (example with m=3)



Counter Machine

Counter 1.

Counter 2.

States

Update Table (example with m=3)



Counter Machine

Counter 1.

Counter 2.

States

Update Table (example with 3 states)



Counter Machine

Counter 1.

Counter 2.

States

Update Table (example with m=3)



Theorem. The following decision problem

“Given a starting configuration determine whether it is 

eventually repeated’’

is undecidable.

Corollary. “Stability” of a counter machine is undecidable. 

Proof: reduction from the Turing Halting Problem.

Note: 1-counter machine is “decidable”.

Simplified counter machine: change in counters is a function of the state 

only. Proof – simple reduction from a general counter machine.

Counter Machine Halting Problem
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Counter 
sub-network 1

Main 
Network

Counter Machine to Queueing Network. Reduction

Counter 

sub-network 2



Counter subnetwork j=1,2.

Measuring Mechanism
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Rybko-Stolyar Network: Queue(t)=Counter(t)
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Extension: Skorohod mapping problem and stability

Theorem. Williams et al. [1994]. Solution to the Skorohod problem exists iff R 

is completely-S. 

Theorem. Deciding whether a given Skorohod problem with a given initial 

state has a stable solution is undecidable.

Proof: a counter machine with m states can be embedded into a Skorohod

mapping problem with in such a way that one step of the 

counter machine corresponds to 5 steps of the Skorohod mapping. 



Skorohod mapping problem and stability

Details:  R has positive upper triangular part including the diagonal. As a 

result it is completely-S. 

Open: stability for arbitrary initial state.



Summary and future work

• Stability of queueing networks under priority type 

scheduling policies with finite/infinite buffers is undecidable.

• Proof: reduction from some other “known” undecidable

problem (counter machine)

• Challenge: FIFO policy, infinite buffers, non-zero service 

times


