Parametric Integer Programming



PART 1
IP IN FIXED DIMENSION
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1983)

How does Geometry of Numbers tie in ?
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Theorem
gcd(a, b) = minf{xa+yb: x,ye Z, xa+yb= 1}

minimize xa+yb
condition xa+yb=1
X, yeZ.

IP with one constraint in dimension 2

Can be solved in time O(s) with Euclidean algorithm

Two flavors of IP
Combinatorics & Geometry of Numbers




PART 1.1
THE KEY CONCEPT: FLATNESS
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Lenstra’s Algorithm

» Algorithm decides PNZ" = ¢

» Compute width of P and
corresponding integral direction
de 74

» If width too large, then
PnZ"# @

» Otherwise search for integer
point recursively on one of the
hyperplanes df'x=6)nP,6eZ

Question

» How to compute a flat direction?
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Computing a flat direction of a Simplex

» Simplex £ = convi{0, vy,..., v}
» Width of X along d:

wy(2) = max{0, dlv,..., dTvn} —min{0,d" vy,...,d v}

T

» Amatrix with rows v}, ..

.,1/5 then
IAdllco < Wg(2) < 2|Ad]lo

» Compute de Z" — {0} s.t. ||Ad|| minimal

If d is as above, then there is constant ¢ (1) with

wX) <wgi2)<cm- -wX).




Lattices and shortest vectors

A(A) = {Ax: xe Z"} is lattice generated by Ae Q"""

v # 0 with | v| minimal is shortest vector of A.




Lattices and shortest vectors

A(A) = {Ax: xe Z"} is lattice generated by Ae Q"""

v # 0 with | v| minimal is shortest vector of A.

With LLL Algorithm (Lenstra, Lenstra & Lovéasz 1982)
Shortest vector of A(A)
» Can be approximated with factor of 2"~D/2 in polynomial time
in varying dimension.
» Can be computed in time O(s) in fixed dimension, where sis
binary encoding length of A.




PART 1.2
VERTICES OF THE INTEGER HULL
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Number of vertices

How many extreme points (vertices) can P; have?
Consider a Knapsack Polyhedron defined by integral data

al)x()+---+amx(n)<pf, x=0
And two different vertices of P;
(x(1),...,x(m)) and (y(1),...,y(n)

and suppose that [log(x(7))] = [log(y(i))] fori=1,...,n. Then
» 2-x—y=20and2-y—x=0
»al (@ x-p+Q2-y-x)=alx+y <2-p
W.Lo.g. one can assume that a’ (2-x—y) < B.
Butthen 1/2(2-x—y)+1/2-y = x which contradicts that x is a vertex.



The number of vertices is polynomial

» Consider simplex with vertex 0
S={xeR"|Bx=0,a’x< B}

with Be 7™ " invertible.
» S={xeR"|Bx=0, (B 'a)’(Bx) < B}

» x€ Z"isvertex of S;if and only if Bx is vertex of conv(K n A(B))
with
K={xeR"|x=0, B 'a)Tx<p}

and
AB) ={Bx|xezZ™.



The number of extreme points is polynomial

By triangulation of P:

Theorem 1.1 (Shevchenko 1981, Hayes & Larman 1983,
Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points.

polynomial in binary encoding length of Aand b



The number of extreme points is polynomial

By triangulation of P:

Theorem 1.1 (Shevchenko 1981, Hayes & Larman 1983,
Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points. O(m' - s™)

polynomial in binary encoding length of Aand b

Tight bounds for simplices: Barany, Howe & Lovasz 1992
Cook, Hartmann, Kannan & McDiarmid 1992



PART 1.3
COMPLEXITY OF IP
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Complexity of IP

Theorem (Lenstra 1983)

An IP can be solved in polynomial time in fixed dimension.

Complexity model:
» Arithmetic model: Count number of arithmetic operations
» Size of numbers in course of algorithm has to remain small

» s: Binary encoding length of largest coefficient

Running time

> 2007) poly(s) (Lenstra using LLL)
» 200108M) . poly(s) (Kannan 1987)
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Complexity of IP in fixed Dimension

m: Number of constraints
s: Largest binary encoding length of number in input

» O(m+ s) for feasibility
> O(s- (m+s)) for optimization (Lenstra 1983)

Theorem (E. 2003)
IP in fixed dimension can be solved in expected time O(m+ s-log m).

Matches running time of Euclidean algorithm if m is fixed
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> Is there a deterministic O(m + s) algorithm ?
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Complexity of IP

Open Problems

> Is there a deterministic O(m + s) algorithm ?

Answer is yes in 2-D (E. & Laue 2005)
» Bit complexity: Is O(ms?) reachable with naive arithmetic ?
(Nguyen & Stehlé 2005)

» Is there a 20" -algorithm for IP in varying dimension?
SV: (Ajtai, Kumar & Sivakumar 2001)




PART 2
PARAMETERIZED IP



Y 3-Statements

Frobenius Problem
Given: ay, ..., a, € Zwith gcd(ay,...,a,) =1
Compute: Largest £ € N which cannot be written as

Xi-ap+-+Xp-an==t X,...,X,€Np
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Strengthening of flatness theorem
» Suppose w(P) = w.(P) with
ceZ"

> Letff= min{clx: xe P}
» If w(P) > w(n), then there exists
integer point in

Pn(B<cx<B+wmn)

Consequence
Pis IP-feasible if and only if at least one of the polyhedra

Pn(chz [Bl+i) i=0,...,0n)

IP- feasible.



Simplification

Assumptions
Q< R™ polyhedron such that
> W, (Pp) = w(Pyp) for each be Q
> min{efx: X€ Py} = elTNb for some matrix N

» Highest constraint pointing up on line
X1 = [e{Nb] +i is agxs b,-j
fori=0,...,w(2)
We can write down a fixed number of candidate solutions with

mixed integer programs such that, if none of them is feasible, then
Py, is IP infeasible.




MIP for i-th candidate

elTNbsz< e{Nb+1
x()=z+i

y= (b)) - a;(Hx(D)) / a;,(2)
y<sx@2)<y+1

x(1),x(2), z,y integral.

Kannan’s partitioning algorithm

Partitions the space of right-hand-sides into polynomial number of
polyhedra, such that these assumptions can be made.




A key lemma

Lemma (Kannan 1992)

Given: A€ Z"™*" and polyhedron Q< R, with n and dim(Q) fixed

There exists polynomial algorithm which computes D< 7" such that
forallbe Q

dde D: wy(Py) <2-w(Pyp)




A key lemma

Lemma (Kannan 1992)

Given: A€ Z"™*" and polyhedron Q< R, with n and dim(Q) fixed
There exists polynomial algorithm which computes D< 7" such that
forallbe Q

dde D: wy(Py) <2-w(Pyp)

Lemma (E. & Shmonin 2007)
Given: A€ 7" " with n fixed

There exists polynomial algorithm which computes D< 7" such that
forallbe Q

Ade D: wy(Py) = w(Pp).
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G Py

» Width direction cis contained in two cones C; and G,
» cis optimal solution of IP

min{(x* - y*)Td: de Z2"n C, n G, - {0}
» ¢ can be replaced by vertex of conv (2" n C; n G, — {0})

» Number of vertices is polynomial in fixed dimension
(Shevchenko 1981, Hayes & Larman 1983, Cook, Hartmann,
Kannan, McDiarmid 1992)

» Can be computed in polynomial time




First partitioning step

Width direction is invariant
» Compute polynomial number of triples

(dI)FI) Gl)»“-) (dk»Fk) Gk)

such that for each be R there exists index i with
> w(Pp) = wg,(Pp)
> max{d] x: x€ Py} =d] F;pand min{d] x: x€ Py} =d] Gib
> w(Py) =d] (F;~G)b

» The b’s corresponding to i are a polyhedron

df (Fi= G)b<dj (Fj— Gy bforall i# .




Second partitioning step

Fix the active constraints pointing up
» w(2) vertical lines
» For each, we fix the highest constraint pointing up
> () choices (polynomial)

» Write down linear constraints which partition right-hand-sides




Partitioning Theorem
We sketched the proof of the following theorem for dimension 2.
Theorem 2.1 (E. & Shmonin 2007)

A€ Z"™" of full column rank; n fixed.

One can compute in polynomial time a partition of Sy, ..., S; of R™

together with a fixed number of mixed-integer-programs

Ajib+ Bjjx+ Cijy < djj foreachi=1,...,t

(with a fixed number of integer variables ) such that the following

holds.
For any b* € S;, Py» N 2" # @ if and only if Py contains at
least one integer vector x determined by an associated
Mixed-Integer-Program A;jb* + B; jx+ C;jy < d; j




Deciding V 3-statements

YV 3-statements

Given: Polyhedron Q< R, Ae Z"™* " te N
Does the following hold?:

Vbe (QNR™ "xZ") Ax<bisIP-feasible

With partitioning theorem

We can assume that there exists a fixed number of mixed integer
programs Ajb+ Bjx+ Cjy<d; j=1,..., k such that solution for b is
computed by one of these MIPs.




Deciding V 3-statements

Searching for a b
» We search a b such that all candidate solutions are infeasible

» To each candidate solution, assign a constraint to be violated;
(',?) choices (polynomial)

» For each choice, check whether all candidate solutions violate
corresponding constraint (MIP in fixed dimension)




Deciding V 3-statements

Searching for a b
» We search a b such that all candidate solutions are infeasible

» To each candidate solution, assign a constraint to be violated;
(',?) choices (polynomial)

» For each choice, check whether all candidate solutions violate
corresponding constraint (MIP in fixed dimension)

Theorem (E. & Shmonin 2007)

If n, t are fixed, then Y 3-statements can be decided in polynomial
time.
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Consequences and related Results

Hilbert Bases
» Hilbert-Basis test in fixed dimension is in P (Cook, Lovasz &
Schrijver 1984)
» If co-dimension is fixed (d + k elements in R, where k fixed),
HB-test is parametric IP in fixed dimension (Seb6 1999) and
thus in P

Generating functions

» Rational generating function of integer points in polyhedra can
be computed in polynomial time in fixed dimension (Barvinok
1994)

» Koppe & Verdoolaege (2007) compute generating functions of
parameterized polyhedra in fixed dimension




Open Problem

Is the following problem in P?
Given A€ 7" and polyhedron Q < R™, where n is fixed, compute
b e Qwith number of integer points in Ax < bis minimal.
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