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PART 1

IP IN FIXED DIMENSION
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How does Geometry of Numbers tie in ?
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gcd(a,b) = min{x a+y b : x,y ∈Z, x a+y b Ê 1}

minimize x a+y b

condition x a+y b Ê 1

x,y ∈Z.

IP with one constraint in dimension 2

Can be solved in time O(s) with Euclidean algorithm

Two flavors of IP

Combinatorics & Geometry of Numbers



PART 1.1

THE KEY CONCEPT: FLATNESS
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Flatness

Width of P

w(P) = min
d∈Zn−{0}

wd(P)

Theorem (Khinchine’s Flatness Theorem)

There exists a constant ω(n) such that, if P∩Zn =; then

w(P) Éω(n).
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Lenstra’s Algorithm
Ï Algorithm decides P∩Zn =;

Ï Compute width of P and

corresponding integral direction

d ∈Zd

Ï If width too large, then

P∩Zn 6= ;

Ï Otherwise search for integer

point recursively on one of the

hyperplanes (dT x =δ)∩P, δ ∈Z

Question

Ï How to compute a flat direction?
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Computing a flat direction of a Simplex

Ï Simplex Σ= conv{0,v1, . . . ,vn}

Ï Width of Σ along d:

wd(Σ) = max{0,dT v1, . . . ,dT vn}−min{0,dT v1, . . . ,dT vn}

Ï A matrix with rows vT
1 , . . . ,vT

n then

‖A d‖∞ É wd(Σ) É 2‖A d‖∞

Ï Compute d ∈Zn − {0} s.t. ‖Ad‖ minimal

If d is as above, then there is constant c1(n) with

w(Σ)É wd(Σ) É c1(n) ·w(Σ).
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Λ(A) = {Ax : x ∈Zn} is lattice generated by A ∈Qn×n

v 6= 0 with ‖v‖ minimal is shortest vector of Λ.



Lattices and shortest vectors

Λ(A) = {Ax : x ∈Zn} is lattice generated by A ∈Qn×n

v 6= 0 with ‖v‖ minimal is shortest vector of Λ.

With LLL Algorithm (Lenstra, Lenstra & Lovász 1982)

Shortest vector of Λ(A)

Ï Can be approximated with factor of 2(n−1)/2 in polynomial time

in varying dimension.

Ï Can be computed in time O(s) in fixed dimension, where s is

binary encoding length of A.



PART 1.2

VERTICES OF THE INTEGER HULL
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Number of vertices

How many extreme points (vertices) can PI have?

Consider a Knapsack Polyhedron defined by integral data

a(1)x(1)+·· · +a(n)x(n) Éβ, x Ê 0

And two different vertices of PI

(x(1), . . . ,x(n)) and (y(1), . . . ,y(n))

and suppose that ⌊log(x(i))⌋ = ⌊log(y(i))⌋ for i = 1, . . . ,n. Then

Ï 2 ·x−y Ê 0 and 2 ·y−x Ê 0

Ï aT
(

(2 ·x−y)+ (2 ·y−x)
)

= aT (x+y) É 2 ·β

W.l.o.g. one can assume that aT (2 ·x−y) Éβ.

But then 1/2(2 ·x−y)+1/2 ·y = x which contradicts that x is a vertex.



The number of vertices is polynomial

Ï Consider simplex with vertex 0

S = {x ∈Rn
| Bx Ê 0, aT x Éβ}

with B ∈Zn×n invertible.

Ï S = {x ∈Rn |Bx Ê 0, (B−1 a)T (Bx) Éβ}

Ï x ∈Zn is vertex of SI if and only if Bx is vertex of conv(K ∩Λ(B))

with

K = {x ∈Rn
| x Ê 0, (B−1 a)T x Éβ}

and

Λ(B) = {Bx | x ∈Zn}.



The number of extreme points is polynomial

By triangulation of P:

Theorem 1.1 (Shevchenko 1981, Hayes & Larman 1983,

Schrijver 1986)

Let Ax É b be an integral system of inequalities, where A ∈Zm×n and

b ∈Zm and n is fixed. The integer hull PI of P = {x ∈Rn | Ax É b} has a

polynomial number of extreme points.

polynomial in binary encoding length of A and b



The number of extreme points is polynomial

By triangulation of P:

Theorem 1.1 (Shevchenko 1981, Hayes & Larman 1983,

Schrijver 1986)

Let Ax É b be an integral system of inequalities, where A ∈Zm×n and

b ∈Zm and n is fixed. The integer hull PI of P = {x ∈Rn | Ax É b} has a

polynomial number of extreme points. O(mn · sn)

polynomial in binary encoding length of A and b

Tight bounds for simplices: Bárány, Howe & Lovász 1992

Cook, Hartmann, Kannan & McDiarmid 1992



PART 1.3

COMPLEXITY OF IP
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Complexity of IP

Theorem (Lenstra 1983)

An IP can be solved in polynomial time in fixed dimension.

Complexity model:

Ï Arithmetic model: Count number of arithmetic operations

Ï Size of numbers in course of algorithm has to remain small

Ï s: Binary encoding length of largest coefficient

Running time

Ï 2O(n3) ·poly(s) (Lenstra using LLL)

Ï 2O(n logn) ·poly(s) (Kannan 1987)
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Complexity of IP in fixed Dimension

m: Number of constraints

s: Largest binary encoding length of number in input

Ï O(m+ s) for feasibility

Ï O(s · (m+ s)) for optimization (Lenstra 1983)

Theorem (E. 2003)

IP in fixed dimension can be solved in expected time O(m+ s · log m).

Matches running time of Euclidean algorithm if m is fixed
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Complexity of IP

Open Problems

Ï Is there a deterministic O(m+ s) algorithm ?

Answer is yes in 2-D (E. & Laue 2005)

Ï Bit complexity: Is O(ms2) reachable with naive arithmetic ?

(Nguyen & Stehlé 2005)

Ï Is there a 2O(n)-algorithm for IP in varying dimension?

SV: (Ajtai, Kumar & Sivakumar 2001)



PART 2

PARAMETERIZED IP



∀∃-Statements

Frobenius Problem

Given: a1, . . . ,an ∈Z with gcd(a1, . . . ,an) = 1

Compute: Largest t ∈N which cannot be written as

x1 ·a1 +·· ·+xn ·an = t, x1, . . . ,xn ∈N0



∀∃-Statements

Frobenius Problem

Given: a1, . . . ,an ∈Z with gcd(a1, . . . ,an) = 1

Compute: Smallest N such that the following formula holds

∀y ∈Z, y ÊN ∃x1, . . . ,xn ∈N0 : y = x1 ·a1 +·· ·+xnan



∀∃-Statements

Frobenius Problem

Given: a1, . . . ,an ∈Z with gcd(a1, . . . ,an) = 1

Compute: Smallest N such that the following formula holds

∀y ∈Z, y ÊN ∃x1, . . . ,xn ∈N0 : y = x1 ·a1 +·· ·+xnan

∀∃-statements

Given: Polyhedron Q ⊆Rm, A ∈Zm×n, t ∈N

Does the following hold?:

∀b ∈
(

Q∩ (Rm−t
×Zt )

)

Ax É b is IP-feasible



∀∃-Statements

Frobenius Problem

Given: a1, . . . ,an ∈Z with gcd(a1, . . . ,an) = 1

Compute: Smallest N such that the following formula holds

∀y ∈Z, y ÊN ∃x1, . . . ,xn ∈N0 : y = x1 ·a1 +·· ·+xnan

∀∃-statements

Given: Polyhedron Q ⊆Rm, A ∈Zm×n, t ∈N

Does the following hold?:

∀b ∈
(

Q∩ (Rm−t
×Zt )

)

Ax É b is IP-feasible

Theorem (Kannan 1992)

If n, t and dim(Q) are fixed, then ∀∃-statements can be decided in

polynomial time.



∀∃-Statements

Frobenius Problem

Given: a1, . . . ,an ∈Z with gcd(a1, . . . ,an) = 1

Compute: Smallest N such that the following formula holds

∀y ∈Z, y ÊN ∃x1, . . . ,xn ∈N0 : y = x1 ·a1 +·· ·+xnan

∀∃-statements

Given: Polyhedron Q ⊆Rm, A ∈Zm×n, t ∈N

Does the following hold?:

∀b ∈
(

Q∩ (Rm−t
×Zt )

)

Ax É b is IP-feasible

Theorem (E. & Shmonin 2007)

If n, t are fixed, then ∀∃-statements can be decided in polynomial

time.
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Strengthening of flatness theorem
Ï Suppose w(P) = wc(P) with

c ∈Zn

Ï Let β=min{cT x : x ∈ P}

Ï If w(P) >ω(n), then there exists

integer point in

P∩
(

βÉ cT x Éβ+ω(n)
)

Consequence

P is IP-feasible if and only if at least one of the polyhedra

P∩
(

cT x = ⌈β⌉+ i
)

i = 0, . . . ,ω(n)

IP-feasible.



Simplification

Assumptions

Q ⊆Rm polyhedron such that

Ï we1
(Pb) = w(Pb) for each b ∈ Q

Ï min{eT
1 x : x ∈ Pb} = eT

1 Nb for some matrix N

Ï Highest constraint pointing up on line

x1 = ⌈eT
1 Nb⌉+ i is aT

ij
x É bij

for i = 0, . . . ,ω(2)

We can write down a fixed number of candidate solutions with

mixed integer programs such that, if none of them is feasible, then

Pb is IP infeasible.



MIP for i-th candidate

eT
1 N b É z < eT

1 N b+1

x(1) = z+ i

y =
(

b(ij)−aij
(1)x(1)

)

/aij
(2)

y É x(2) < y+1

x(1),x(2),z,y integral.

Kannan’s partitioning algorithm

Partitions the space of right-hand-sides into polynomial number of

polyhedra, such that these assumptions can be made.



A key lemma

Lemma (Kannan 1992)

Given: A ∈Zm×n and polyhedron Q ⊆Rm, with n and dim(Q) fixed

There exists polynomial algorithm which computes D ⊆Zn such that

for all b ∈ Q

∃d ∈ D : wd(Pb) É 2 ·w(Pb)



A key lemma

Lemma (Kannan 1992)

Given: A ∈Zm×n and polyhedron Q ⊆Rm, with n and dim(Q) fixed

There exists polynomial algorithm which computes D ⊆Zn such that

for all b ∈ Q

∃d ∈ D : wd(Pb) É 2 ·w(Pb)

Lemma (E. & Shmonin 2007)

Given: A ∈Zm×n with n fixed

There exists polynomial algorithm which computes D ⊆Zn such that

for all b ∈ Q

∃d ∈ D : wd(Pb)= w(Pb).
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Ï Width direction c is contained in two cones C1 and C2

Ï c is optimal solution of IP

min
{

(x∗−y∗)T d : d ∈Zn ∩C1 ∩C2 − {0}
}

Ï c can be replaced by vertex of conv
(

Zn ∩C1 ∩C2 − {0}
)

Ï Number of vertices is polynomial in fixed dimension

(Shevchenko 1981, Hayes & Larman 1983, Cook, Hartmann,

Kannan, McDiarmid 1992)

Ï Can be computed in polynomial time



First partitioning step

Width direction is invariant

Ï Compute polynomial number of triples

(d1,F1,G1), . . . , (dk,Fk,Gk)

such that for each b ∈Rm there exists index i with

Ï w(Pb) = wdi
(Pb)

Ï max{dT
i

x : x ∈Pb} = dT
i

Fi b and min{dT
i

x : x ∈Pb} = dT
i

Gi b
Ï w(Pb) = dT

i
(Fi −Gi)b

Ï The b’s corresponding to i are a polyhedron

dT
i (Fi −Gi)b É dT

j (Fj −Gj)b for all i 6= j.



Second partitioning step

Fix the active constraints pointing up

Ï ω(2) vertical lines

Ï For each, we fix the highest constraint pointing up

Ï
( m
ω(2)

)

choices (polynomial)

Ï Write down linear constraints which partition right-hand-sides



Partitioning Theorem

We sketched the proof of the following theorem for dimension 2.

Theorem 2.1 (E. & Shmonin 2007)

A ∈Zm×n of full column rank; n fixed.

One can compute in polynomial time a partition of S1, . . . ,St of Rm

together with a fixed number of mixed-integer-programs

Aijb+Bijx+Cijy É dij for each i = 1, . . . , t

(with a fixed number of integer variables ) such that the following

holds.

For any b∗ ∈ Si, Pb∗ ∩Zn 6= ; if and only if Pb∗ contains at

least one integer vector x determined by an associated

Mixed-Integer-Program Aijb
∗+Bi,jx+Ci,jy É di,j



Deciding ∀∃-statements

∀∃-statements

Given: Polyhedron Q ⊆Rm, A ∈Zm×n, t ∈N

Does the following hold?:

∀b ∈
(

Q∩ (Rm−t
×Zt )

)

Ax É b is IP-feasible

With partitioning theorem

We can assume that there exists a fixed number of mixed integer

programs Ajb+Bjx+Cjy É dj j = 1, . . . ,k such that solution for b is

computed by one of these MIPs.



Deciding ∀∃-statements

Searching for a b

Ï We search a b such that all candidate solutions are infeasible

Ï To each candidate solution, assign a constraint to be violated;
(m

k

)

choices (polynomial)

Ï For each choice, check whether all candidate solutions violate

corresponding constraint (MIP in fixed dimension)



Deciding ∀∃-statements

Searching for a b

Ï We search a b such that all candidate solutions are infeasible

Ï To each candidate solution, assign a constraint to be violated;
(m

k

)

choices (polynomial)

Ï For each choice, check whether all candidate solutions violate

corresponding constraint (MIP in fixed dimension)

Theorem (E. & Shmonin 2007)

If n, t are fixed, then ∀∃-statements can be decided in polynomial

time.
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Hilbert Bases

Ï Hilbert-Basis test in fixed dimension is in P (Cook, Lovász &

Schrijver 1984)

Ï If co-dimension is fixed (d+k elements in Rd, where k fixed),

HB-test is parametric IP in fixed dimension (Sebő 1999)
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Consequences and related Results

Hilbert Bases

Ï Hilbert-Basis test in fixed dimension is in P (Cook, Lovász &

Schrijver 1984)

Ï If co-dimension is fixed (d+k elements in Rd, where k fixed),

HB-test is parametric IP in fixed dimension (Sebő 1999) and

thus in P

Generating functions

Ï Rational generating function of integer points in polyhedra can

be computed in polynomial time in fixed dimension (Barvinok

1994)

Ï Köppe & Verdoolaege (2007) compute generating functions of

parameterized polyhedra in fixed dimension



Open Problem

Is the following problem in P?

Given A ∈Zm×n and polyhedron Q ⊆Rm, where n is fixed, compute

b ∈ Q with number of integer points in Ax É b is minimal.
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