Parametric Integer Programming

PART 1
 IP IN FIXED DIMENSION

Integer Programming

IP

Given: Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ and objective function vector $c \in \mathbb{Z}^{n}$

Find: Integer point $x \in \mathbb{Z}^{n} \cap P$ which maximizes or minimizes objective function $c^{T} x$

Integer Programming

IP

Given: Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ and objective function vector $c \in \mathbb{Z}^{n}$

Find: Integer point $x \in \mathbb{Z}^{n} \cap P$ which maximizes or minimizes objective function $c^{T} x$

IP in Fixed Dimension

- Integer programming is NP-complete (Karp 1972, Borosh \& Treybig 1976)
- If dimension is fixed, then IP is polynomially solvable (Lenstra 1983)

IP in Fixed Dimension

- Integer programming is NP-complete (Karp 1972, Borosh \& Treybig 1976)
- If dimension is fixed, then IP is polynomially solvable (Lenstra 1983)

How does Geometry of Numbers tie in?

GCDs and IP

Theorem

$$
\operatorname{gcd}(a, b)=\min \{x a+y b: x, y \in \mathbb{Z}, x a+y b \geqslant 1\}
$$

$$
\begin{array}{ll}
\text { minimize } & x a+y b \\
\text { condition } & x a+y b \geqslant 1 \\
& x, y \in \mathbb{Z}
\end{array}
$$

GCDs and IP

Theorem

$$
\operatorname{gcd}(a, b)=\min \{x a+y b: x, y \in \mathbb{Z}, x a+y b \geqslant 1\}
$$

$$
\begin{array}{ll}
\text { minimize } & x a+y b \\
\text { condition } & x a+y b \geqslant 1 \\
& x, y \in \mathbb{Z} .
\end{array}
$$

IP with one constraint in dimension 2
Can be solved in time $O(s)$ with Euclidean algorithm

GCDs and IP

Theorem
 $$
\operatorname{gcd}(a, b)=\min \{x a+y b: x, y \in \mathbb{Z}, x a+y b \geqslant 1\}
$$

$$
\begin{array}{ll}
\text { minimize } & x a+y b \\
\text { condition } & x a+y b \geqslant 1 \\
& x, y \in \mathbb{Z}
\end{array}
$$

IP with one constraint in dimension 2
Can be solved in time $O(s)$ with Euclidean algorithm

Two flavors of IP
Combinatorics \& Geometry of Numbers

Part 1.1

The key concept: Flatness

Width of a polyhedron P

Width along $d \in \mathbb{R}^{n}$
Width of $P \subseteq \mathbb{R}^{n}$ along d

$$
w_{d}(P)=\max \left\{d^{T} x: x \in P\right\}-\min \left\{d^{T} x: x \in P\right\}
$$

Width of a polyhedron P

Width along $d \in \mathbb{R}^{n}$
Width of $P \subseteq \mathbb{R}^{n}$ along d

$$
w_{d}(P)=\max \left\{d^{T} x: x \in P\right\}-\min \left\{d^{T} x: x \in P\right\}
$$

Width of a polyhedron P

Width along $d \in \mathbb{R}^{n}$
Width of $P \subseteq \mathbb{R}^{n}$ along d

$$
w_{d}(P)=\max \left\{d^{T} x: x \in P\right\}-\min \left\{d^{T} x: x \in P\right\}
$$

\max
min

Flatness

Width of P

$$
w(P)=\min _{d \in \mathbb{Z}^{n}-\{0\}} w_{d}(P)
$$

Theorem (Khinchine's Flatness Theorem)

There exists a constant $\omega(n)$ such that, if $P \cap \mathbb{Z}^{n}=\varnothing$ then

$$
w(P) \leqslant \omega(n)
$$

Flatness

Width of P

$$
w(P)=\min _{d \in \mathbb{Z}^{n}-\{0\}} w_{d}(P)
$$

Theorem (Khinchine's Flatness Theorem)

There exists a constant $\omega(n)$ such that, if $P \cap \mathbb{Z}^{n}=\varnothing$ then

$$
w(P) \leqslant \omega(n)
$$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$
- Compute width of P and corresponding integral direction $d \in \mathbb{Z}^{d}$
- If width too large, then $P \cap \mathbb{Z}^{n} \neq \varnothing$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$
- Compute width of P and corresponding integral direction $d \in \mathbb{Z}^{d}$
- If width too large, then $P \cap \mathbb{Z}^{n} \neq \varnothing$
- Otherwise search for integer point recursively on one of the hyperplanes ($d^{T} x=\delta$) $\cap P, \delta \in \mathbb{Z}$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$
- Compute width of P and corresponding integral direction $d \in \mathbb{Z}^{d}$
- If width too large, then $P \cap \mathbb{Z}^{n} \neq \varnothing$
- Otherwise search for integer point recursively on one of the hyperplanes ($d^{T} x=\delta$) $\cap P, \delta \in \mathbb{Z}$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$
- Compute width of P and corresponding integral direction $d \in \mathbb{Z}^{d}$
- If width too large, then $P \cap \mathbb{Z}^{n} \neq \varnothing$
- Otherwise search for integer point recursively on one of the hyperplanes ($d^{T} x=\delta$) $\cap P, \delta \in \mathbb{Z}$

Lenstra's Algorithm

- Algorithm decides $P \cap \mathbb{Z}^{n}=\varnothing$
- Compute width of P and corresponding integral direction $d \in \mathbb{Z}^{d}$
- If width too large, then $P \cap \mathbb{Z}^{n} \neq \varnothing$
- Otherwise search for integer point recursively on one of the hyperplanes $\left(d^{T} x=\delta\right) \cap P, \delta \in \mathbb{Z}$

Question

- How to compute a flat direction?

Computing a flat direction of a Simplex

- Simplex $\Sigma=\operatorname{conv}\left\{0, v_{1}, \ldots, v_{n}\right\}$

Computing a flat direction of a Simplex

- Simplex $\Sigma=\operatorname{conv}\left\{0, v_{1}, \ldots, v_{n}\right\}$
- Width of Σ along d :

$$
w_{d}(\Sigma)=\max \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}-\min \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}
$$

Computing a flat direction of a Simplex

- Simplex $\Sigma=\operatorname{conv}\left\{0, v_{1}, \ldots, v_{n}\right\}$
- Width of Σ along d :

$$
w_{d}(\Sigma)=\max \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}-\min \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}
$$

- A matrix with rows $v_{1}^{T}, \ldots, v_{n}^{T}$ then

$$
\|\mathbf{A d}\|_{\infty} \leqslant \mathbf{w}_{\mathbf{d}}(\Sigma) \leqslant 2\|\mathbf{A d}\|_{\infty}
$$

Computing a flat direction of a Simplex

- Simplex $\Sigma=\operatorname{conv}\left\{0, v_{1}, \ldots, v_{n}\right\}$
- Width of Σ along d :

$$
w_{d}(\Sigma)=\max \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}-\min \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}
$$

- A matrix with rows $v_{1}^{T}, \ldots, v_{n}^{T}$ then

$$
\|\mathbf{A d}\|_{\infty} \leqslant \mathbf{w}_{\mathbf{d}}(\Sigma) \leqslant 2\|\mathbf{A d}\|_{\infty}
$$

- Compute $d \in \mathbb{Z}^{n}-\{0\}$ s.t. $\|A d\|$ minimal

Computing a flat direction of a Simplex

- Simplex $\Sigma=\operatorname{conv}\left\{0, v_{1}, \ldots, v_{n}\right\}$
- Width of Σ along d :

$$
w_{d}(\Sigma)=\max \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}-\min \left\{0, d^{T} v_{1}, \ldots, d^{T} v_{n}\right\}
$$

- A matrix with rows $v_{1}^{T}, \ldots, v_{n}^{T}$ then

$$
\|\mathbf{A d}\|_{\infty} \leqslant \mathbf{w}_{\mathbf{d}}(\Sigma) \leqslant 2\|\mathbf{A d}\|_{\infty}
$$

- Compute $d \in \mathbb{Z}^{n}-\{0\}$ s.t. $\|A d\|$ minimal

If d is as above, then there is constant $c_{1}(n)$ with

$$
w(\Sigma) \leqslant w_{d}(\Sigma) \leqslant c_{1}(n) \cdot w(\Sigma)
$$

Lattices and shortest vectors

$\Lambda(A)=\left\{A x: x \in \mathbb{Z}^{n}\right\}$ is lattice generated by $A \in \mathbb{Q}^{n \times n}$
$\nu \neq 0$ with $\|\nu\|$ minimal is shortest vector of Λ.

Lattices and shortest vectors

$\Lambda(A)=\left\{A x: x \in \mathbb{Z}^{n}\right\}$ is lattice generated by $A \in \mathbb{Q}^{n \times n}$
$\nu \neq 0$ with $\|\nu\|$ minimal is shortest vector of Λ.
With LLL Algorithm (Lenstra, Lenstra \& Lovász 1982)
Shortest vector of $\Lambda(A)$

- Can be approximated with factor of $2^{(n-1) / 2}$ in polynomial time in varying dimension.
- Can be computed in time $O(s)$ in fixed dimension, where s is binary encoding length of A.

Part 1.2
 Vertices of the Integer Hull

Geometric interpretation

- Given a (bounded) Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$
- Find vertex of the integer hull P_{I} of P which maximizes objective function $c^{T} x$

Geometric interpretation

- Given a (bounded) Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$
- Find vertex of the integer hull P_{I} of P which maximizes objective function $c^{T} x$

Geometric interpretation

- Given a (bounded) Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$
- Find vertex of the integer hull P_{I} of P which maximizes objective function $c^{T} x$

Number of vertices

How many extreme points (vertices) can P_{I} have?

Number of vertices

How many extreme points (vertices) can P_{I} have?
Consider a Knapsack Polyhedron defined by integral data

$$
a(1) x(1)+\cdots+a(n) x(n) \leqslant \beta, \quad x \geqslant 0
$$

And two different vertices of P_{I}

$$
(x(1), \ldots, x(n)) \quad \text { and } \quad(y(1), \ldots, y(n))
$$

and suppose that $\lfloor\log (x(i))\rfloor=\lfloor\log (y(i))\rfloor$ for $i=1, \ldots, n$.

Number of vertices

How many extreme points (vertices) can P_{I} have?
Consider a Knapsack Polyhedron defined by integral data

$$
a(1) x(1)+\cdots+a(n) x(n) \leqslant \beta, \quad x \geqslant 0
$$

And two different vertices of P_{I}

$$
(x(1), \ldots, x(n)) \quad \text { and } \quad(y(1), \ldots, y(n))
$$

and suppose that $\lfloor\log (x(i))\rfloor=\lfloor\log (y(i))\rfloor$ for $i=1, \ldots, n$. Then

- $2 \cdot x-y \geqslant 0$ and $2 \cdot y-x \geqslant 0$
- $a^{T}((2 \cdot x-y)+(2 \cdot y-x))=a^{T}(x+y) \leqslant 2 \cdot \beta$
W.l.o.g. one can assume that $a^{T}(2 \cdot x-y) \leqslant \beta$.

Number of vertices

How many extreme points (vertices) can P_{I} have?
Consider a Knapsack Polyhedron defined by integral data

$$
a(1) x(1)+\cdots+a(n) x(n) \leqslant \beta, \quad x \geqslant 0
$$

And two different vertices of P_{I}

$$
(x(1), \ldots, x(n)) \quad \text { and } \quad(y(1), \ldots, y(n))
$$

and suppose that $\lfloor\log (x(i))\rfloor=\lfloor\log (y(i))\rfloor$ for $i=1, \ldots, n$. Then

- $2 \cdot x-y \geqslant 0$ and $2 \cdot y-x \geqslant 0$
- $a^{T}((2 \cdot x-y)+(2 \cdot y-x))=a^{T}(x+y) \leqslant 2 \cdot \beta$
W.l.o.g. one can assume that $a^{T}(2 \cdot x-y) \leqslant \beta$.

But then $1 / 2(2 \cdot x-y)+1 / 2 \cdot y=x$ which contradicts that x is a vertex.

The number of vertices is polynomial

- Consider simplex with vertex 0

$$
S=\left\{x \in \mathbb{R}^{n} \mid B x \geqslant 0, a^{T} x \leqslant \beta\right\}
$$

with $B \in \mathbb{Z}^{n \times n}$ invertible.

- $S=\left\{x \in \mathbb{R}^{n} \mid B x \geqslant 0,\left(B^{-1} a\right)^{T}(B x) \leqslant \beta\right\}$
- $x \in \mathbb{Z}^{n}$ is vertex of S_{I} if and only if $B x$ is vertex of $\operatorname{conv}(K \cap \Lambda(B))$ with

$$
K=\left\{x \in \mathbb{R}^{n} \mid x \geqslant 0,\left(B^{-1} a\right)^{T} x \leqslant \beta\right\}
$$

and

$$
\Lambda(B)=\left\{B x \mid x \in \mathbb{Z}^{n}\right\} .
$$

The number of extreme points is polynomial

By triangulation of P :

Theorem 1.1 (Shevchenko 1981, Hayes \& Larman 1983, Schrijver 1986)

Let $A x \leqslant b$ be an integral system of inequalities, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$ and n is fixed. The integer hull P_{I} of $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ has a polynomial number of extreme points.
polynomial in binary encoding length of A and b

The number of extreme points is polynomial

By triangulation of P :

Theorem 1.1 (Shevchenko 1981, Hayes \& Larman 1983, Schrijver 1986)

Let $A x \leqslant b$ be an integral system of inequalities, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$ and n is fixed. The integer hull P_{I} of $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ has a polynomial number of extreme points. $O\left(m^{n} \cdot s^{n}\right)$
polynomial in binary encoding length of A and b

Tight bounds for simplices:
Bárány, Howe \& Lovász 1992
Cook, Hartmann, Kannan \& McDiarmid 1992

Part 1.3
 Complexity of IP

Complexity of IP

Theorem (Lenstra 1983)

An IP can be solved in polynomial time in fixed dimension.
Complexity model:

- Arithmetic model: Count number of arithmetic operations
- Size of numbers in course of algorithm has to remain small
- s : Binary encoding length of largest coefficient

Complexity of IP

Theorem (Lenstra 1983)

An IP can be solved in polynomial time in fixed dimension.
Complexity model:

- Arithmetic model: Count number of arithmetic operations
- Size of numbers in course of algorithm has to remain small
- s : Binary encoding length of largest coefficient

Running time

- $2^{O\left(n^{3}\right)} \cdot \operatorname{poly}(s)$ (Lenstra using LLL)
- $2^{O(n \log n)} \cdot \operatorname{poly}(s)($ Kannan 1987)

Complexity of IP in fixed Dimension

m : Number of constraints
s : Largest binary encoding length of number in input

Complexity of IP in fixed Dimension

m : Number of constraints
s : Largest binary encoding length of number in input

- $O(m+s)$ for feasibility
- $O(s \cdot(m+s))$ for optimization
(Lenstra 1983)

Complexity of IP in fixed Dimension

m : Number of constraints
s : Largest binary encoding length of number in input

- $O(m+s)$ for feasibility
- $O(s \cdot(m+s))$ for optimization
(Lenstra 1983)
Theorem (E. 2003)
IP in fixed dimension can be solved in expected time $O(m+s \cdot \log m)$.
Matches running time of Euclidean algorithm if m is fixed

Complexity of IP

Open Problems

- Is there a deterministic $O(m+s)$ algorithm?

Complexity of IP

Open Problems

- Is there a deterministic $O(m+s)$ algorithm? Answer is yes in 2-D

Complexity of IP

Open Problems

- Is there a deterministic $O(m+s)$ algorithm?

Answer is yes in 2-D
(E. \& Laue 2005)

- Bit complexity: Is $O\left(m s^{2}\right)$ reachable with naive arithmetic?
(Nguyen \& Stehlé 2005)
- Is there a $2^{O(n)}$-algorithm for IP in varying dimension? SV: (Ajtai, Kumar \& Sivakumar 2001)

PART 2
 Parameterized IP

$\forall \exists$-Statements

Frobenius Problem

Given: $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$
Compute: Largest $t \in \mathbb{N}$ which cannot be written as

$$
x_{1} \cdot a_{1}+\cdots+x_{n} \cdot a_{n}=t, \quad x_{1}, \ldots, x_{n} \in \mathbb{N}_{0}
$$

$\forall \exists$-Statements

Frobenius Problem

Given: $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$
Compute: Smallest N such that the following formula holds

$$
\forall y \in \mathbb{Z}, y \geqslant N \quad \exists x_{1}, \ldots, x_{n} \in \mathbb{N}_{0} \quad: \quad y=x_{1} \cdot a_{1}+\cdots+x_{n} a_{n}
$$

$\forall \exists$-Statements

Frobenius Problem

Given: $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$
Compute: Smallest N such that the following formula holds

$$
\forall y \in \mathbb{Z}, y \geqslant N \quad \exists x_{1}, \ldots, x_{n} \in \mathbb{N}_{0} \quad: \quad y=x_{1} \cdot a_{1}+\cdots+x_{n} a_{n}
$$

$\forall \exists$-statements

Given: Polyhedron $Q \subseteq \mathbb{R}^{m}, A \in \mathbb{Z}^{m \times n}, t \in \mathbb{N}$
Does the following hold?:

$$
\forall b \in\left(Q \cap\left(\mathbb{R}^{m-t} \times \mathbb{Z}^{t}\right)\right) \quad A x \leqslant b \text { is IP-feasible }
$$

$\forall \exists$-Statements

Frobenius Problem

Given: $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$
Compute: Smallest N such that the following formula holds

$$
\forall y \in \mathbb{Z}, y \geqslant N \quad \exists x_{1}, \ldots, x_{n} \in \mathbb{N}_{0} \quad: \quad y=x_{1} \cdot a_{1}+\cdots+x_{n} a_{n}
$$

$\forall \exists$-statements

Given: Polyhedron $Q \subseteq \mathbb{R}^{m}, A \in \mathbb{Z}^{m \times n}, t \in \mathbb{N}$
Does the following hold?:

$$
\forall b \in\left(Q \cap\left(\mathbb{R}^{m-t} \times \mathbb{Z}^{t}\right)\right) \quad A x \leqslant b \text { is IP-feasible }
$$

Theorem (Kannan 1992)

If n, t and $\operatorname{dim}(\mathbf{Q})$ are fixed, then $\forall \exists$-statements can be decided in polynomial time.

$\forall \exists$-Statements

Frobenius Problem

Given: $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$
Compute: Smallest N such that the following formula holds

$$
\forall y \in \mathbb{Z}, y \geqslant N \quad \exists x_{1}, \ldots, x_{n} \in \mathbb{N}_{0} \quad: \quad y=x_{1} \cdot a_{1}+\cdots+x_{n} a_{n}
$$

$\forall \exists$-statements

Given: Polyhedron $Q \subseteq \mathbb{R}^{m}, A \in \mathbb{Z}^{m \times n}, t \in \mathbb{N}$
Does the following hold?:

$$
\forall b \in\left(Q \cap\left(\mathbb{R}^{m-t} \times \mathbb{Z}^{t}\right)\right) \quad A x \leqslant b \text { is IP-feasible }
$$

Theorem (E. \& Shmonin 2007)

If n, t are fixed, then $\forall \exists$-statements can be decided in polynomial time.

Strengthening of flatness theorem

- Suppose $w(P)=w_{c}(P)$ with $c \in \mathbb{Z}^{n}$

Strengthening of flatness theorem

- Suppose $w(P)=w_{c}(P)$ with $c \in \mathbb{Z}^{n}$
- Let $\beta=\min \left\{c^{T} x: x \in P\right\}$

Strengthening of flatness theorem

- Suppose $w(P)=w_{c}(P)$ with $c \in \mathbb{Z}^{n}$
- Let $\beta=\min \left\{c^{T} x: x \in P\right\}$
- If $\omega(P)>\omega(n)$, then there exists integer point in

$$
P \cap\left(\beta \leqslant c^{T} x \leqslant \beta+\omega(n)\right)
$$

Strengthening of flatness theorem

- Suppose $w(P)=w_{c}(P)$ with $c \in \mathbb{Z}^{n}$
- Let $\beta=\min \left\{c^{T} x: x \in P\right\}$
- If $\omega(P)>\omega(n)$, then there exists integer point in

$$
P \cap\left(\beta \leqslant c^{T} x \leqslant \beta+\omega(n)\right)
$$

Consequence

P is IP-feasible if and only if at least one of the polyhedra

$$
P \cap\left(c^{T} x=\lceil\beta\rceil+i\right) \quad i=0, \ldots, \omega(n)
$$

IP-feasible.

Simplification

Assumptions

$Q \subseteq \mathbb{R}^{m}$ polyhedron such that

- $w_{e_{1}}\left(P_{b}\right)=w\left(P_{b}\right)$ for each $b \in Q$
- $\min \left\{e_{1}^{T} x: x \in P_{b}\right\}=e_{1}^{T} N b$ for some matrix N
- Highest constraint pointing up on line

$$
x_{1}=\left\lceil e_{1}^{T} N b\right\rceil+i \quad \text { is } \quad a_{i_{j}}^{T} x \leqslant b_{i_{j}}
$$

for $i=0, \ldots, \omega(2)$

We can write down a fixed number of candidate solutions with mixed integer programs such that, if none of them is feasible, then P_{b} is IP infeasible.

MIP for i-th candidate

$$
\begin{aligned}
& e_{1}^{T} N b \leqslant z<e_{1}^{T} N b+1 \\
& x(1)=z+i \\
& y=\left(b\left(i_{j}\right)-a_{i_{j}}(1) x(1)\right) / a_{i_{j}}(2) \\
& y \leqslant x(2)<y+1 \\
& x(1), x(2), z, y \text { integral. }
\end{aligned}
$$

Kannan's partitioning algorithm

Partitions the space of right-hand-sides into polynomial number of polyhedra, such that these assumptions can be made.

A key lemma

Lemma (Kannan 1992)

Given: $A \in \mathbb{Z}^{m \times n}$ and polyhedron $Q \subseteq \mathbb{R}^{m}$, with n and $\operatorname{dim}(Q)$ fixed There exists polynomial algorithm which computes $D \subseteq \mathbb{Z}^{n}$ such that for all $b \in Q$

$$
\exists d \in D: w_{d}\left(P_{b}\right) \leqslant 2 \cdot w\left(P_{b}\right)
$$

A key lemma

Lemma (Kannan 1992)

Given: $A \in \mathbb{Z}^{m \times n}$ and polyhedron $Q \subseteq \mathbb{R}^{m}$, with n and $\operatorname{dim}(Q)$ fixed There exists polynomial algorithm which computes $D \subseteq \mathbb{Z}^{n}$ such that for all $b \in Q$

$$
\exists d \in D: w_{d}\left(P_{b}\right) \leqslant 2 \cdot w\left(P_{b}\right)
$$

Lemma (E. \& Shmonin 2007)

Given: $A \in \mathbb{Z}^{m \times n}$ with n fixed
There exists polynomial algorithm which computes $D \subseteq \mathbb{Z}^{n}$ such that for all $b \in Q$

$$
\exists d \in D: w_{d}\left(P_{b}\right)=w\left(P_{b}\right) .
$$

Sketch of Proof

Sketch of Proof

- Width direction c is contained in two cones C_{1} and C_{2}

Sketch of Proof

- Width direction c is contained in two cones C_{1} and C_{2}
- c is optimal solution of IP $\min \left\{\left(x^{*}-y^{*}\right)^{T} d: d \in \mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right\}$

Sketch of Proof

- Width direction c is contained in two cones C_{1} and C_{2}
- c is optimal solution of IP $\min \left\{\left(x^{*}-y^{*}\right)^{T} d: d \in \mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right\}$
- c can be replaced by vertex of $\operatorname{conv}\left(\mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right)$

Sketch of Proof

- Width direction c is contained in two cones C_{1} and C_{2}
- c is optimal solution of IP $\min \left\{\left(x^{*}-y^{*}\right)^{T} d: d \in \mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right\}$
- c can be replaced by vertex of $\operatorname{conv}\left(\mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right)$
- Number of vertices is polynomial in fixed dimension (Shevchenko 1981, Hayes \& Larman 1983, Cook, Hartmann, Kannan, McDiarmid 1992)

Sketch of Proof

- Width direction c is contained in two cones C_{1} and C_{2}
- c is optimal solution of IP $\min \left\{\left(x^{*}-y^{*}\right)^{T} d: d \in \mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right\}$
- c can be replaced by vertex of $\operatorname{conv}\left(\mathbb{Z}^{n} \cap C_{1} \cap C_{2}-\{0\}\right)$
- Number of vertices is polynomial in fixed dimension (Shevchenko 1981, Hayes \& Larman 1983, Cook, Hartmann, Kannan, McDiarmid 1992)
- Can be computed in polynomial time

First partitioning step

Width direction is invariant

- Compute polynomial number of triples

$$
\left(d_{1}, F_{1}, G_{1}\right), \ldots,\left(d_{k}, F_{k}, G_{k}\right)
$$

such that for each $b \in \mathbb{R}^{m}$ there exists index i with

- $w\left(P_{b}\right)=w_{d_{i}}\left(P_{b}\right)$
- $\max \left\{d_{i}^{T} x: x \in P_{b}\right\}=d_{i}^{T} F_{i} b$ and $\min \left\{d_{i}^{T} x: x \in P_{b}\right\}=d_{i}^{T} G_{i} b$
- $w\left(P_{b}\right)=d_{i}^{T}\left(F_{i}-G_{i}\right) b$
- The b 's corresponding to i are a polyhedron

$$
d_{i}^{T}\left(F_{i}-G_{i}\right) b \leqslant d_{j}^{T}\left(F_{j}-G_{j}\right) b \text { for all } i \neq j .
$$

Second partitioning step

Fix the active constraints pointing up

- $\omega(2)$ vertical lines
- For each, we fix the highest constraint pointing up
- $\binom{m}{\omega(2)}$ choices (polynomial)
- Write down linear constraints which partition right-hand-sides

Partitioning Theorem

We sketched the proof of the following theorem for dimension 2.

Theorem 2.1 (E. \& Shmonin 2007)

$A \in \mathbb{Z}^{m \times n}$ of full column rank; n fixed.
One can compute in polynomial time a partition of S_{1}, \ldots, S_{t} of \mathbb{R}^{m} together with a fixed number of mixed-integer-programs $A_{i j} b+B_{i j} x+C_{i j} y \leqslant d_{i j}$ for each $i=1, \ldots, t$
(with a fixed number of integer variables) such that the following holds.

For any $b^{*} \in S_{i}, P_{b^{*}} \cap \mathbb{Z}^{n} \neq \varnothing$ if and only if $P_{b^{*}}$ contains at least one integer vector x determined by an associated Mixed-Integer-Program $A_{i j} b^{*}+B_{i, j} x+C_{i, j} y \leqslant d_{i, j}$

Deciding $\forall \exists$-statements

$\forall \exists$-statements

Given: Polyhedron $Q \subseteq \mathbb{R}^{m}, A \in \mathbb{Z}^{m \times n}, t \in \mathbb{N}$
Does the following hold?:

$$
\forall b \in\left(Q \cap\left(\mathbb{R}^{m-t} \times \mathbb{Z}^{t}\right)\right) \quad A x \leqslant b \text { is IP-feasible }
$$

With partitioning theorem

We can assume that there exists a fixed number of mixed integer programs $A_{j} b+B_{j} x+C_{j} y \leqslant d_{j} j=1, \ldots, k$ such that solution for b is computed by one of these MIPs.

Deciding $\forall \exists$-statements

Searching for a b

- We search a b such that all candidate solutions are infeasible
- To each candidate solution, assign a constraint to be violated; $\binom{m}{k}$ choices (polynomial)
- For each choice, check whether all candidate solutions violate corresponding constraint (MIP in fixed dimension)

Deciding $\forall \exists$-statements

Searching for a b

- We search a b such that all candidate solutions are infeasible
- To each candidate solution, assign a constraint to be violated; $\binom{m}{k}$ choices (polynomial)
- For each choice, check whether all candidate solutions violate corresponding constraint (MIP in fixed dimension)

```
Theorem (E. & Shmonin 2007)
If n,t are fixed, then }\forall\exists\mathrm{ -statements can be decided in polynomial
time.
```


Consequences and related Results

Hilbert Bases

- Hilbert-Basis test in fixed dimension is in P (Cook, Lovász \& Schrijver 1984)
- If co-dimension is fixed ($d+k$ elements in \mathbb{R}^{d}, where k fixed), HB-test is parametric IP in fixed dimension (Sebő 1999)

Consequences and related Results

Hilbert Bases

- Hilbert-Basis test in fixed dimension is in P (Cook, Lovász \& Schrijver 1984)
- If co-dimension is fixed ($d+k$ elements in \mathbb{R}^{d}, where k fixed), HB-test is parametric IP in fixed dimension (Sebő 1999) and thus in P

Consequences and related Results

Hilbert Bases

- Hilbert-Basis test in fixed dimension is in P (Cook, Lovász \& Schrijver 1984)
- If co-dimension is fixed ($d+k$ elements in \mathbb{R}^{d}, where k fixed), HB-test is parametric IP in fixed dimension (Sebő 1999) and thus in P

Generating functions

- Rational generating function of integer points in polyhedra can be computed in polynomial time in fixed dimension (Barvinok 1994)
- Köppe \& Verdoolaege (2007) compute generating functions of parameterized polyhedra in fixed dimension

Open Problem

Is the following problem in P ?
Given $A \in \mathbb{Z}^{m \times n}$ and polyhedron $Q \subseteq \mathbb{R}^{m}$, where n is fixed, compute $b \in Q$ with number of integer points in $A x \leqslant b$ is minimal.

