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The field of stochastic optimization goes back at least 50 years, with the classical work of Dantzig and Beale,
and a rich flourishing body of work. The study of this area through the viewglass of approximation algorithms,
however, is somewhat more recent, starting with the work on Dye, Stougie, and Tomasgard [2], Immorlica,
Karger, Minkoff and Mirrokni [6], and of Ravi & Sinha [7], all appearing within the past 4 years. This line
of work recognized that stochastic optimization often involved computatinally hard problems to be solved (at
times because the underlying problems were hard, and at other times because the stochastic optimization gave
it a layer of hardness), and hence it made sense to also give provable bounds on the performance of polynomial-
time heuristics for these problems. There has been much work since then in this area, and these two lectures
will attempt to give an overview of some of the ideas, techniques and results.

Two Stage Optimization with Recourse. Consider a combinatorial optimization problem which choose
elements to minimize the total cost of constructing a feasible solution that satisfies requirements of clients: e.g.,
choosing a set of edges to connect up the client terminals in the Steiner tree problem. We consider a stochastic
version of such a problem where the solution is constructed in two stages: Before the actual requirements
materialize, we can choose some elements in a first stage. The actual requirements are then revealed, drawn
from a pre-specified probability distribution π; thereupon, some more elements may be chosen to obtain a
feasible solution for the actual requirements. However, in this second (recourse) stage, choosing an element is
potentially costlier. The goal is to minimize the expected total cost : that is, the first stage cost plus the expected
second stage cost.

We will discuss the two currently used approaches to solve these problems in the two-stage framework: those
that have involved solving linear programming relaxations of these stochastic optimization problems, and then
rounding them (e.g., as in [7, 8, 5] and others that take “well-behaved” existing algorithms for the underlying
combinatorial optimization problem and use them to solve their stochastic versions (e.g., as in [4, 3]). We will
also discuss several of the modeling issues involved, including how the probability distribution π is represented
and the associated question of scenario reduction (see, e.g., [1]), and how different models for cost inflation in
the second stage lead to differing levels of intractability.

References

[1] Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling bounds for stochastic optimization. In
Approximation, randomization and combinatorial optimization, volume 3624 of Lecture Notes in Comput.
Sci., pages 257–269. Springer, Berlin, 2005.

[2] Shane Dye, Leen Stougie, and Asgeir Tomasgard. The stochastic single resource service-provision problem.
Naval Research Logistics, 50(8):869–887, 2003.

[3] Anupam Gupta and Martin Pál. Stochastic Steiner trees without a root. In Proceedings of the 32nd
International Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of Lecture
Notes in Computer Science, pages 1051–1063, 2005.

1



[4] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sampling: Approximation algorithms for
stochastic optimization problems. In Proceedings of the 36th ACM Symposium on the Theory of Computing
(STOC), pages 417–426, 2004.

[5] Anupam Gupta, R. Ravi, and Amitabh Sinha. An edge in time saves nine: LP rounding approximation
algorithms for stochastic network design. In Proceedings of the 45th Symposium on the Foundations of
Computer Science (FOCS), pages 218–227, 2004.

[6] Nicole Immorlica, David Karger, Maria Minkoff, and Vahab Mirrokni. On the costs and benefits of procras-
tination: Approximation algorithms for stochastic combinatorial optimization problems. In Proceedings of
the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 684–693, 2004.

[7] R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic optimization
problems. In Proceedings of the 10th Integer Programming and Combinatorial Optimization Conference
(IPCO), pages 101–115, 2004.

[8] David B. Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear programming and
its application to stochastic integer programs. J. ACM, 53(6):978–1012, 2006.

2


