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Abstract

Work on modelling uncertainty in game theory and economics al-
most always uses Bayesian assumptions. On the other hand, work in
computer science frequently uses non-Bayesian assumptions and ap-
peal to forms of worst case analysis.

In this talk we deal with Pre-Bayesian games, games with incom-
plete information but with no probabilistic assumptions about the
environment. We first discuss safety-level, minmax regret, and com-
petitive ratio equilibria, and their existence in a general setting. Our
study then concentrates on safety-level equilibrium and its use when
incorporating uncertainty into congestion settings. In particular, we
show that the lack of knowledge on the number of participants is
beneficial to the society in any linear resource selection game. Next
we introduce efficient learning equilibrium [ELE], a form of ex-post
equilibrium for Pre-Bayesian repeated (and more generally, stochas-
tic) games. ELE is a solution concept for learning in games, where
the learning algorithms themselves are required to be in equilibrium
for a whole class of games. We prove the (constructive) existence of
ELE for some rich settings.

The talk will be a brief and somewhat informal introduction to
our work on Pre-Bayesian games. The particular results which will be
presented are based on joint work with Itai Ashlagi, Ronen Brafman,
and Dov Monderer.
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