Making money out of public transportation

Performance measurement of bus and tram advertising

> NGB/LNMB congress Lunteren 2007 Marieke de Koning, Pointlogic

Subject

- Measuring the performance of advertising on trams and buses: how many people see the ads?
- The performance is used to determine the value of an advertisement and therefore the price
- If the performance is measured in a similar way as for other outdoor items (billboards) performances can be compared

Overview

- Short introduction to some media terminology
- Measuring performance of billboards
- Measuring performance of tram and bus advertising
 - Differences from billboard performance approach
 - Method, assumptions and calculations
 - Results
 - Next steps

Pointlogic

- 'Enabling smart decisions'
- Software and consultancy with a considerable mathematical component
- Main areas: media, marketing, HR
- Employs 65 people, 25 of them with a mathematical or econometric background

Media terminology

- Performance (and value) of media channels is measured in terms of *reach*
 - Gross reach/GRPs: how many people see an advertisement
 - Net reach: how many *different* people see an advertisement; % of people that saw at least 1 ad.
- Different ways to measure contacts
 - Survey: recall of contact (e.g. magazines)
 - Electronic panels (e.g. measuring TV reach with a set TV meter)
 - Diaries (e.g. radio)

Measuring outdoor billboard reach in Belgium

- Project carried out in 2003 for CIM a media research JIC
- Reach measurement via a respondent trip research
 - Recall based methods are not useful for outdoor measurement
 - Traffic counts are insufficient for calculating net reach

×			

Method: billboard reach

- A label model generates 2-4 possible routes for each persons trips (fastest, shortest, prefer highways, avoid intersections)
- A nested logit model generates probabilities associated to each route
- The generated routes are matched with the location of billboards
- For each billboard, the gross and net reach can be calculated by summing over the probabilities

Bus and tram reach

- In 2006, CIM and ClearChannel (exploits outdoor advertising) asked for an extension of the project to measure reach for bus and trams
- Basic concept: use the trip research and the bus/tram timetables to determine how many contacts people have with buses and trams
- Contrary to billboards, not only place is relevant since both person and bus are moving.
- Therefore also time and speed need to be taken into account: the bus and person need to be in the same place at the same time to generate a contact

Bus and tram reach: general concept

- Two stage process
 - Determine if a person and a bus/tram make use of the same roads
 - Include time and speed to see if there actually is a contact between the person and bus/tram

Space-time graphs

Contacts between buses and persons can be graphed in a space-time graph; below a graph for a specific road/stretch

Space-time graphs

Contacts between buses and persons can be graphed in a space-time graph; below a graph for a specific road/stretch

Refining: adding uncertainty

- For each respondent we only know the time interval of departure. The time he arrives at a certain part of the route is estimated and therefore not certain. We deal with this by using a time interval with uniform distribution.
- Added advantage: the contacts generated will be more representative given the fact that we use a sample: instead of few 1 contacts we have a larger set of contacts between 0-1.

enabling smart decisions

intloaic

Refining: bus stops

- Buses stop for a short while on bus stops this affects the number of contacts
- Assumption: we correct for the stops by using a lower bus speed
- Advantage: easier, we do not need to know the precise placement of the bus stop on the road
- Not a big problem since roads are defined as very short segments

Refining: bus stops

- Buses stop for a short while on bus stops this affects the number of contacts
- Assumption: we correct for the stops by using a lower bus speed
- Advantage: easier, we do not need to know the precise placement of the bus stop on the road
- Not a big problem since roads are defined as very short segments

Calculation of contact probability

- Determine minimal and maximal time (E, G) that person can arrive to have a contact with the bus (person-line crosses bus-line at beginning or end of road)
- Determine overlap with actual arrival times (D, H)
- Calculate contact probability: [G-E]/[H-D]

Visibility of bus/tram sides

- Determine which sides of the bus/tram are visible when a person meets a bus/tram
- Depends of:
 - Direction (same direction or opposite direction)
 - Transport mode person (by foot, by car)
 - Position bus/tram on road (many trams drive in the middle of the road)
- Note:

pointlogic

We calculate OTS (opportunity to see), not actual contacts

decisions

Bus and tram routes and schedules

- We need exact bus and tram routes including times to be able to calculate contact probabilities
- Input data:
 - Bus and tram stops (location)
 - Routes (sequence of stops)
 - Schedules (time the bus/tram is at each stop)
 - Tunnels
 - Positions of trams on roads
- Reconstruction of routes
 - Digitalisation of data (stops, tunnels, positions on road)
 - Application of route planner to create exact routes between bus stops (shortest route)

Implementation

- The raw matched data contains about 250 million records
- This is aggregated to depot level advertisements cannot be bought for specific buses but only for depots
- The final data is combined with the billboard data and placed under planning software

					Resu
	Bereken			Geheel	Adv. Niet adv.
Algemeen	1. Campagne informatie				
	Planner:				
A 2	Periode:	1/7/2007 - 1/13/2007			
	Totaal aantal zijden:	3			
	Totaal aantal producten:	1			
Doelgroepen	_ 2. Netwerk agenda				
	Netwerk	BrusselBus STIB			
	Eigenaar	Metrabus			
	Periode	1/7/2007 - 1/13/2007			
Netw. agenda	# zijden	3			
Hour gonda	🖃 3. Netwerk prijzen				
	Afficheur	Metrabus			
	Prijzen	0			
	🔄 📕 4. Zijden in steden				
Resultaten	BRUXELLES	3			
	🔄 🔄 5. Doelgroepen				
	Naam	Total			
	Filteren	Nee			
	Populatie grootte	8504263			
	Bereik 1+	17 %			
	Bereik 0+	100 %			
	GRP's	153.6			
	OTS/GCF	9			
	Contacten	13063518			
	Bereikte individuen	1448327			
	🔄 📃 6. Contacten per vervoerst	niddel			
	Naam	Total			
	Voetganger	2829110			
	Auto	7244791			•
	Export	Genereer fiche Mapping syst	aam		
	Export	Genereer ticne Mapping syst	eem		

Some results – billboards vs. buses and trams

 Average daily number of contacts in three cities, for billboards, buses and trams

	Billboard	Bus	Tram
Brussels	14,229	3,812	13,184
Charleroi	13,061	3,882	
Namur	9,399	5,044	

- Buses and trams are not on the street all day, this results in a lower level of contacts
- Trams drive on main roads and therefore generate more contacts

Some results - contacts for different sides

• Average daily number of contacts for trams and buses in Brussels

	Left side	Right side	Factor
Tram	7,056	6,128	1.2
Bus	3,510	562	6.2

- The left side of buses/trams generate more contacts: most people pass on the left side
- For trams, the difference is much smaller because a lot of trams drive on the middle of the road

Some results – net reach billboards vs. buses and trams

• Case: set of buses in Brussels compared to a set of billboards in Brussels

	Buses	Billboards
Net reach	17%	16.7 %
GRPs	153.6	342.3
Nbr of contacts	13,063,518	29,108,814
Nbr of people that were reached	1,448,327	1,423,503

- With a similar net reach, billboards generate more than twice as much contacts
- Buses are far more efficient in generating net reach

Next steps

- Extension of calculations for people travelling with public transportation
- Calculation of reach for ads inside railway and subway stations (also on the platforms)
- Application of calculations to new, larger respondent trip research
- ... changes in bus schedules to generate more contacts...? Probably not!

