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Newsboy, Uncertainty, and Sensitivity

Let us consider the standard newsboy problem.

Wholesale price from the publisher: $2 per piece

Retailer price on street: $5 per piece

Unsold newspaper return to the wholesaler: $1 per piece

Two scenarios:

• Good day: one can sell 100 pieces;

• Bad day: one can sell 50 pieces.

What is the optimal strategy of the newsboy?

Shuzhong Zhang, The Chinese University of Hong Kong
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Standard Stochastic Programming Formulation

The Stochastic Program Formulation:

(NB) minimize 2x + E [−5yω − zω]

subject to x ≥ 0

yω ≤ ω

yω + zω = x

yω ≥ 0, zω ≥ 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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Linear Programming Resolution

Let

p1 be the probability of Good Day

p2 be the probability of Bad Day

min 2x +p1(−5y1 − z1) + p2(−5y2 − z2)

s.t. x ≥ 0

y1 ≤ 100

y1 + z1 = x

y1 ≥ 0, z1 ≥ 0

y2 ≤ 50

y2 + z2 = x

y2 ≥ 0, z2 ≥ 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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What to Do According to the Model?

If (p1, p2) = (0.3, 0.7) then x∗ = 100;

If (p1, p2) = (0.2, 0.8) then x∗ = 50;

If (p1, p2) = (0.25, 0.75) then x∗ = 68.2776.

Shuzhong Zhang, The Chinese University of Hong Kong
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Airline Revenue Management: Another Case Study

Single-leg flight: Static and Deterministic Model

– Flight capacity: C

– Fare classes: i = 1, ...,m each with price ri

– Demand for fare class i: di

The model:

v1(C) := max
∑m

i=1 ri min{xi, di}
s.t.

∑m
i=1 xi ≤ C,

x ∈ Zm
+ ,

Shuzhong Zhang, The Chinese University of Hong Kong
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Single-leg flight: Static and Stochastic Model

v2(C) := max
∑m

i=1 riE (min{xi, Di})
s.t.

∑m
i=1 xi ≤ C,

x ∈ Zm
+ .

The computation can be done using the recursive formula

Rp(y) = max
0≤xp≤y

{Rp+1(y − xp) + rpE(min{xp, Dp})} .

where

Rp(y) = max





m∑

i=p

riE(min{xi, Di})
∣∣∣∣∣∣

m∑

i=p

xi ≤ y, xi ∈ Z, i = p, ...,m



 .

Shuzhong Zhang, The Chinese University of Hong Kong
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A Robust Model

Assume that random variable Di, representing the total demand for
fare class i, is concentrated on {0, · · · ,K}, and this demand has an
estimated probability vector p̂i = (p̂i0, · · · , p̂iK).

The true probability vectors pi is in the ambiguity set Pi:

Pi = {pi ∈ <K+1 | pi ∈ p̂i + ∆i, pT
i e = 1},

where

∆i =

{
di = (di0, · · · , diK)T ∈ <K+1

∣∣∣∣∣
K∑

k=0

(
dik

p̂ik

)2

≤ δ2
i

}

with δi ∈ [0, 1].

Shuzhong Zhang, The Chinese University of Hong Kong
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The robust model is

v3(C) := max
∑m

i=1 ri minpi∈Pi {E (min{xi, Di(pi)})}
s.t.

∑m
i=1 xi ≤ C,

x ∈ Zm
+ .

Let
Gi(xi) = min

pi∈Pi

{E (min{xi, Di(pi)})}

and one can calculate that

Gi(xi) = c(xi)T p̂i − δi

√√√√
K∑

k=1

p̂2
ikc2

k(xi)− (
∑K

k=1 p̂2
ikck(xi))2∑K

k=0 p̂2
ik

.

where
c(xi)T := (0, 1, · · · , xi − 1, xi, xi, · · · , xi).

Shuzhong Zhang, The Chinese University of Hong Kong
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A Dynamic Model

Let ξt denote the random demand in period t.

Assume that ξt may take m + 1 different values r0, r1, ..., rm and its
discrete density is given by

Prob {ξt = ri} = pit

with i = 0, 1, ..., m and t = 1, ..., T .

Let Rt(z) be the revenue generated from period t to T , before a
request shows up in period t, while the number of available seats at
the beginning of period t is z.

Let Jt(z) := E(Rt(z)).

Shuzhong Zhang, The Chinese University of Hong Kong
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The Lautenbacher and Stidham Model

The dynamic programming formula is

Jt(z) = E (max{ξt + Jt+1(z − 1), Jt+1(z)}) ,

with

JT (z) =





E(ξT ), if z > 0

0, if z = 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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Let
∆t+1(z) := Jt+1(z)− Jt+1(z − 1)

which can be shown to be nonnegative and non-increasing in z.

We then have

Jt(z) = Jt+1(z) + E (max{ξt −∆t+1(z), 0}) ,

or specifically,

Jt(z) = Jt+1(z) +
m∑

i=1

pit(ri −∆t+1(z))+

Shuzhong Zhang, The Chinese University of Hong Kong
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Robust Dynamic Model

Under the same ambiguity assumption on the probabilities:

Jt(z) = Jt+1(z) +
m∑

i=1

p̂it(ri − (Jt+1(z)− Jt+1(z − 1))+ + Ht(z)

with

Ht(z) = −δt

√√√√
m∑

i=1

p̂2
itc

2
it −

(
∑m

i=1 p̂2
itcit)

2

∑m
i=1 p̂2

it

,

where

cit := (ri − (Jt+1(z)− Jt+1(z − 1)))+, i = 1, ...,m.

Shuzhong Zhang, The Chinese University of Hong Kong
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Simulation Results

The characteristic of a solution for the robust model is not being
conservative: it immunizes the variability from ambiguous data!

The parameters in simulation (the static part):

Parameters Values

[M, N, K, C, m] [25, 250, 100, 100, 4]

(r1, r2, r3, r4) (2, 3, 4, 6)

(κ1, κ2, κ3, κ4) (40, 20, 10, 1)

(µ1, µ2, µ3, µ4) (70, 40, 30, 10)

We use the truncated (by K) Poisson distributions to model the
demands, with the rate λi being uniform in [κi, µi], i = 1, 2, 3, 4.

Shuzhong Zhang, The Chinese University of Hong Kong



LNMB, The Netherlands, January 16 – 18, 2007 15

Mean Standard Deviation

Run R(a) Non-R(b) (b− a)/b R(c) Non-R(d) (d− c)/d

1 259.9800 260.0200 0.0154% 18.0090 18.7750 4.0777%

2 275.6000 276.5600 0.3500% 12.8040 14.9030 14.0810%

3 277.1200 277.7400 0.2218% 11.9320 14.0740 15.2160%

4 287.7000 288.2400 0.1887% 13.1010 15.2410 14.0350%

5 283.8500 284.5100 0.2334% 13.1380 15.3610 14.4730%

6 299.5600 299.7600 0.0681% 17.5140 17.6740 0.9024%

7 304.3500 305.3700 0.3340% 16.9290 19.6080 13.6630%

8 285.9600 286.3300 0.1313% 13.2190 15.7330 15.9770%

9 289.0400 289.6900 0.2237% 15.5990 18.5220 15.7780%

10 268.0600 268.1600 0.0403% 15.2080 15.5560 2.2364%

11 291.6600 292.1000 0.1506% 14.8070 17.3390 14.6020%

12 261.2900 261.4400 0.0581% 15.1350 15.4880 2.2761%

Airline Revenue Management: The Static Model

Shuzhong Zhang, The Chinese University of Hong Kong
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Mean Standard Deviation

Run R(a) Non-R(b) (b− a)/b R(c) Non-R(d) (d− c)/d

1 432.6600 437.3400 1.0692% 13.0110 13.7500 5.3766%

2 438.1000 443.0200 1.1088% 11.8790 15.3450 22.5850%

3 425.0600 427.3000 0.5252% 12.8420 14.9320 13.9940%

4 437.3300 444.0200 1.5071% 11.8860 13.7100 13.3050%

5 430.9800 435.9200 1.1314% 12.3960 14.5080 14.5550%

6 427.4600 432.5900 1.1854% 11.5500 14.9910 22.9550%

7 425.1600 430.3700 1.2092% 12.7460 15.4330 17.4100%

8 429.7400 436.3800 1.5198% 12.0690 14.7410 18.1240%

9 424.4900 428.8000 1.0047% 12.2520 13.7000 10.5710%

10 436.9900 441.6200 1.0480% 12.4890 15.5960 19.9190%

11 432.2000 438.5200 1.4412% 13.1890 14.9990 12.0700%

12 439.3000 445.0900 1.3013% 12.3520 15.3690 19.6310%

Airline Revenue Management: The Dynamic Model

Shuzhong Zhang, The Chinese University of Hong Kong
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Run Perfect(a) Dynamic(b) Static(c) %(a− b)/a %(a− c)/a

1 429.0100 427.0300 410.7100 0.4622 4.2666

2 434.2700 432.5000 416.0400 0.4068 4.1983

3 432.2200 430.4100 413.6400 0.4179 4.2990

4 436.5800 434.9000 417.8100 0.3852 4.3001

5 438.1600 436.1400 419.4700 0.4612 4.2660

6 443.5300 441.5500 424.5700 0.4484 4.2762

7 431.6700 430.5000 413.7800 0.2701 4.1437

8 435.7300 434.6000 417.3700 0.2607 4.2145

9 433.0000 431.0500 414.3100 0.4495 4.3152

10 439.1600 437.5400 420.3800 0.3689 4.2776

11 439.1100 437.3000 420.3500 0.4122 4.2723

12 433.9600 432.8600 416.0800 0.2528 4.1208

Cost of Perfect Information: Static and Dynamic Models

Shuzhong Zhang, The Chinese University of Hong Kong
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Robust Multistage Scenario Trees: The Third Case Study

Shuzhong Zhang, The Chinese University of Hong Kong
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A Simple Investment Model Based on a Utility Function

(P1) max
m∑

i=1

πiu(φT ri)

s.t. φT e = 1

φ ∈ ∆,

where
n: the number of stocks

m: the number of sequent scenarios at each node

φ ∈ <n: the holding of stocks

ri ∈ <n: the return of n stocks if scenario i happens

πi: the probability that scenario i will occur

e ∈ <n: the vector of all 1’s

∆: the set of admissible portfolios, which is assumed to be convex.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Two-Stage Extension

(P2) max
φ

m∑
i=1

πi

[
max

φi

m∑
j=1

πi
ju(φiT

rij)

]

s.t. φiT

e = φT ri, ∀i = 1, 2, · · · ,m
φi ∈ ∆i

s.t. φT e = 1

φ ∈ ∆.

Shuzhong Zhang, The Chinese University of Hong Kong
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Ambiguity and Robustness

Assume

• The topology of the scenario tree is reliable;

• The values on the scenario tree are ambiguous;

• The probability estimation is only an estimation.

Shuzhong Zhang, The Chinese University of Hong Kong
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The Robust Version of the Two-Stage Model

(RP2) max
φ

min
ri∈V i,y∈U

m∑
i=1

(π̃i + yi)max
φi

min
rij∈V ij ,yi∈Ui

m∑
j=1

(π̃i
j + yi

j)u(φiT

rij)

s.t. φiT

e = φT ri,∀i = 1, 2, · · · ,m
φi ∈ ∆i

s.t. φT e = 1

φ ∈ ∆.

Shuzhong Zhang, The Chinese University of Hong Kong
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Rule of the Game

Can we represent the above optimization model in finite

terms so as to enable efficient solution methods?

Shuzhong Zhang, The Chinese University of Hong Kong
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Some Preparations

• A pointed convex cone K is a set satisfying

– If a ∈ K and −a ∈ K then a = 0.

– If x ∈ K then tx ∈ K for all t > 0.

– If a ∈ K and b ∈ K then a + b ∈ K.

• If K is convex cone then its dual cone is

K∗ = {s | xT s ≥ 0∀x ∈ K}.

• If U is a convex set, then the corresponding homogenized cone is

H(U) = cl






 t

x




∣∣∣∣∣∣
t > 0,

x

t
∈ U



 .

Shuzhong Zhang, The Chinese University of Hong Kong



LNMB, The Netherlands, January 16 – 18, 2007 25

An Important Cone

An (n + 1)-dimensional Second Order Cone:

SOC(n + 1) =








t

x1

...

xn




∣∣∣∣∣∣∣∣∣∣∣∣

t ≥
√√√√

n∑

j=1

x2
j





.

Shuzhong Zhang, The Chinese University of Hong Kong
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Conic Optimization

minimize cT x

subject to Ax = b

x ∈ K

• Known as Semidefinite Programming (SDP)
if K is essentially the cone of positive semidefinite matrices.
Available solvers: SeDuMi, SDPA, SDPT3, ...

• Known as Second Order Cone Programming (SOCP)
if K is essentially the second order cone.
Available solvers: SeDuMi, MOSEK, ...

Shuzhong Zhang, The Chinese University of Hong Kong
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A Specific Two-Stage Model

• There is no short selling: ∆ = ∆i = <n
+.

• We use a semi-variance disutility function

d(w) = (R− w)2+.

• V i, V ij ⊆ <n
+.

• The ambiguity sets are ellipsoidal:

Π = {π ∈ <m | πT e = 1, ‖π − π̃‖ ≤ θ}
V i = {ri ∈ <n | (ri − r̃i)T Qi(ri − r̃i) ≤ ρ2

i }
Πi = {π ∈ <m | πiT

e = 1, ‖πi − π̃i‖ ≤ θi}
V ij = {rij ∈ <n | (rij − r̃ij)T Qij(rij − r̃ij) ≤ ρ2

ij}.

Shuzhong Zhang, The Chinese University of Hong Kong
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Also,

U = {y ∈ <m | yT e = 0, ‖y‖ ≤ θ}
U i = {yi | yiT

e = 0, ‖yi‖ ≤ θi}, i = 1, 2, · · · , m.

By linear transformations, one can assume

U = {y ∈ <m | yT e = 0, ‖y‖ ≤ θ},
V i = {ri ∈ <n | ‖(ri − r̃i)‖ ≤ ρi},
U i = {yi ∈ <m | yiT

e = 0, ‖yi‖ ≤ θi},
V ij = {rij ∈ <n | ‖(rij − r̃ij)‖ ≤ ρij}.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Finite Robust Formulation

min
φ,φi,dij ,ti,t0

t0

s.t.

(
t0 − π̃T t

θ[e · tT e
m

− t]

)
∈ SOC(m + 1)(

ti − π̃iT
di

θi[e ·
di

T e

m
− di]

)
∈ SOC(m + 1), ∀i = 1, 2, · · · , m

(
φT ri − φiT

e

ρiφ

)
∈ SOC(n + 1), ∀i = 1, 2, · · · , m

(
dij + 1

dij − 1

2τij

)
∈ SOC(3)

(
τij − Rij + φiT

r̃ij

ρijφi

)
∈ SOC(n + 1)

τij ≥ 0

φi ≥ 0

φT e = 1

φ ≥ 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Finite Robust Formulation for the General Model

max
φ,φi,uij,wij,wi,t0

t0

s.t.

(
π̃T t − t0

t

)
∈ H(U)∗(

π̃iT
ui − ti

ui

)
∈ H(Ui)∗

uij ≤ u(wij)(
−wij

φi

)
∈ H(V ij)∗(

−φiT
e

φ

)
∈ H(V i)∗

φi ∈ ∆

φT e = 1

φ ∈ ∆i.

Shuzhong Zhang, The Chinese University of Hong Kong
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Numerical Results

We wish to choose a portfolio among four indices: Heng Seng Index,
Dow Jones index, London index and Nikkei. The decision horizon is
divided into two periods, and the length of each period is one month.
The target return is assumed to be 0.3% for these two months in total,
i.e. R=1.003. We use the monthly price from Jan. 2001 to Dec. 2004
(source: www.yahoo.com) as historical data to get a least square
estimate for the VAR model:

ht = c + Ωht−1 + εt, εt ∼ N(0,Σ), t = 1, · · · , T.

For each setting, we generate 30 scenarios trees. For each scenario
tree, we simulate 500 random runs.

Shuzhong Zhang, The Chinese University of Hong Kong
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The comparison of the mean of 500 simulated disutility function values
for (SP2) and (RSP2) under different parameter settings:

Parameter settings mean(mean(φSP )) mean(mean(φRSP ))

m = 10, θ = θi = ρi = ρij = 0.01 0.016594 0.016472

m = 10, θ = θi = ρi = ρij = 0.1 0.019674 0.019079

m = 20, θ = θi = ρi = ρij = 0.01 0.038082 0.038143

m = 20, θ = θi = ρi = ρij = 0.1 0.040925 0.043790

Parameter settings std(mean(φSP )) std(mean(φRSP ))

m = 10, θ = θi = ρi = ρij = 0.01 0.000896 0.000838

m = 10, θ = θi = ρi = ρij = 0.1 0.008564 0.003961

m = 20, θ = θi = ρi = ρij = 0.01 0.001217 0.001168

m = 20, θ = θi = ρi = ρij = 0.1 0.008844 0.005006

Parameter settings min(mean(φSP )) min(mean(φRSP ))

m = 10, θ = θi = ρi = ρij = 0.01 0.015113 0.015049

m = 10, θ = θi = ρi = ρij = 0.1 0.007236 0.011178

m = 20, θ = θi = ρi = ρij = 0.01 0.034983 0.035368

m = 20, θ = θi = ρi = ρij = 0.1 0.024528 0.031694

Parameter settings max(mean(φSP )) max(mean(φRSP ))

m = 10, θ = θi = ρi = ρij = 0.01 0.018534 0.018310

m = 10, θ = θi = ρi = ρij = 0.1 0.044821 0.029962

m = 20, θ = θi = ρi = ρij = 0.01 0.040037 0.040258

m = 20, θ = θi = ρi = ρij = 0.1 0.063347 0.053967

Shuzhong Zhang, The Chinese University of Hong Kong
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Non-Robust Robust

Para. min max average min max average

(10, 0.01) 0.015113 0.018534 0.016594 0.015049 0.018310 0.016472

(10, 0.1) 0.007236 0.044821 0.019674 0.011178 0.029962 0.019079

(20, 0.01) 0.034983 0.040037 0.038082 0.035368 0.040258 0.038143

(20, 0.1) 0.024528 0.063347 0.040925 0.031694 0.053967 0.043790

Expected Utility: Robust vs. Non-Robust Models

Shuzhong Zhang, The Chinese University of Hong Kong
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Non-Robust Robust % change

Para. averagea stdc averageb stdd (a− b)/a (c− d)/c

(10, 0.01) 0.016594 0.000896 0.016472 0.000838 0.735% 6.473%

(10, 0.1) 0.019674 0.008564 0.019079 0.003961 3.024% 53.748%

(20, 0.01) 0.038082 0.001217 0.038143 0.001168 -0.160% 4.026%

(20, 0.1) 0.040925 0.008844 0.043790 0.005006 -7.000% 43.396%

Variability: Robust vs. Non-Robust Models

Shuzhong Zhang, The Chinese University of Hong Kong
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Conclusions

• Uncertainty and ambiguity issues in decision models;

• Uncertainty is captured by stochastic models;

• Ambiguity is handled by robust optimization models;

• Robust solutions are usually immunized against data ambiguities,
in the form of reduced variability.

Shuzhong Zhang, The Chinese University of Hong Kong
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