# Optimized Randomness! 

## Why and How?

## Shuzhong Zhang

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Based on joint works with my collaborators:
S. He, Z. Luo, J. Nie, N. Sidiropoulos, P. Tseng, J. Xie

32nd Conference on the Mathematics of Operations Research
'De Werelt', Lunteren, The Netherlands
January 17, 2007

## An Example for Randomization

Zhi-Quan Luo, An Isotropic Universal Decentralized Estimation Scheme for a Bandwidth Constrained Ad Hoc Sensor Network.

IEEE Journal on Selected Areas in Communications, 23 (4), 735 - 744, 2005.

## Data Transmission in Communication

- Ad hoc sensor network with $K$ sensors.
- Each sensor observes a real data in $[-U, U]$ independently.
- Each sensor sends back the data to the base-station.
- The base-station operates a least square estimation.


## Matters of Facts

- Sensors have weak batteries.
- The above scheme is an unbiased estimation.
- The statistical error is

$$
\frac{U^{2}}{K}
$$

## A Randomized Transmission Scheme!

- Each sensor observes the data in binary digits:

$$
a_{1} a_{2} a_{3} \cdots
$$

- Each sensor, say sensor $k$, independently tosses a coin to decide which single binary digit to transmit: $\xi=j$ with probability $1 / 2^{j}$, $j=1,2, \ldots$
- Then, sends this one bit data $a_{\xi}$ back to the station.
- The base-station simply adds up all the received digits.
- This is an unbiased estimation, with statistical error

$$
\frac{4 U^{2}}{K}
$$

## Another Example: Transmit Beamforming

A transmitter utilizes an array of $n$ transmitting antennas to broadcast information within its service area to $m$ radio receivers.

The constraints model the requirement that the total received signal power at receiver $i$ must be above a given threshold (normalized to 1 ); or, equivalently, a signal-to-noise ratio (SNR) condition for receiver $i$, as commonly used in data communication.

The objective is to minimize the total transmit power subject to individual SNR requirements (one at each receiver).

## Measuring Quality of Decisions

In a minimization problem, the quality measure of a solution $x$ is a guaranteed bound $\theta$ such that

$$
v(x) \leq \theta \times v^{*}
$$

In this context, $\theta \geq 1$, e.g., $\theta=150 \%$.
In a maximization problem, the quality measure of a solution $x$ is a guaranteed bound $\theta$ such that

$$
v(x) \geq \theta \times v^{*}
$$

In this context, $\theta \leq 1$, e.g., $\theta=85 \%$.
The value $\theta$ is called approximation ratio of a method.

## Transmit Beaforming: A Quadratic Model

The problem of transmit beamforming as stated before can be precisely modelled by homogeneous complex quadratic minimization:

$$
\begin{array}{rll}
(Q P c)_{\min } & \min & z^{H} C z \\
& \text { s.t. } & z^{H} Q_{i} z \geq 1, \quad i=1, \ldots, m, \\
& z \in \mathbf{C}^{n} .
\end{array}
$$

## Homogeneous Quadratic Minimization

In general, let us consider:

$$
\begin{array}{lll}
(Q P r)_{\min } & \min & x^{T} C x \\
& \text { s.t. } & x^{T} Q_{i} x \geq 1, \quad i=1, \ldots, m \\
& x \in \Re^{n}
\end{array}
$$

All data matrices are assumed to be positive semidefinite.
This problem is clearly NP-hard.
Also, $(Q P c)_{\text {min }}$ is NP-hard.

## The SDP Relaxation

Consider the Semidefinite Programming relaxation for $(Q P r)_{\text {min }}$

$$
\begin{array}{lll}
(S D P r)_{\min } & \min & C \bullet X \\
& \text { s.t. } & Q_{i} \bullet X \geq 1, \quad i=1, \ldots, m, \\
& X \succeq 0,
\end{array}
$$

and similarly for $(Q P c)_{\text {min }}$ :

$$
\begin{array}{lll}
(S D P c)_{\min } & \min & C \bullet Z \\
& \text { s.t. } & Q_{i} \bullet Z \geq 1, \quad i=1, \ldots, m, \\
& Z \succeq 0 .
\end{array}
$$

## A Randomized Approach to $(Q P r)_{\text {min }}$

But what to do with the solution of a relaxed problem?
Let $X^{*}$ be the optimal solution of the SDP relaxation.

1. Generate a random vector $\xi \in \Re^{n}$ from the real-valued normal distribution $\mathcal{N}\left(0, X^{*}\right)$.
2. Let

$$
x^{*}(\xi)=\frac{\xi}{\min _{1 \leq i \leq m} \sqrt{\xi^{T} Q_{i} \xi}} .
$$

## Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For $m \geq 2$, we have

$$
v\left(Q P r_{\min }\right) \leq \frac{27 m^{2}}{\pi} v\left(S D P r_{\min }\right)
$$

Moreover, there is an instance such that

$$
v\left(Q P r_{\min }\right) \geq \frac{2 m^{2}}{\pi^{2}} v\left(S D P r_{\min }\right)
$$

## The Complex Case: $(Q P c)_{\min }$

1. Generate a random vector $\xi \in \mathbf{C}^{n}$ from the complex-valued normal distribution $\mathcal{N}_{c}\left(0, Z^{*}\right)$.
2. Let

$$
x^{*}(\xi)=\frac{\xi}{\min _{1 \leq i \leq m} \sqrt{\xi^{H} Q_{i} \xi}}
$$

## Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For $m \geq 2$, we have

$$
v\left(Q P c_{\min }\right) \leq 8 m \cdot v\left(S D P c_{\min }\right)
$$

Moreover, there is an instance such that

$$
v\left(Q P c_{\min }\right) \geq \frac{m}{\pi^{2}(2+\pi / 2)^{2}} v\left(S D P c_{\min }\right)
$$

## A Homogeneous Quadratic Maximization Model

The following model is considered by Nemirvoski, Roos, and Terlaky (1999):

$$
\begin{array}{rll}
(Q P r)_{\max } & \max & x^{T} C x \\
& \text { s.t. } & x^{T} Q_{i} x \leq 1, \quad i=1, \ldots, m \\
& x \in \Re^{n}
\end{array}
$$

where $Q_{i} \succeq 0, i=1, \ldots, m$.

## A Homogeneous Quadratic Maximization Model

The corresponding SDP relaxation is

$$
\begin{array}{lll}
(S D P r)_{\max } & \max & C \bullet X \\
& \text { s.t. } & Q_{i} \bullet X \leq 1, \quad i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

Theorem. (Nemirovski, Roos, Terlaky; 1999)
It holds that

$$
v\left((Q P r)_{\max }\right) \geq \frac{1}{2 \ln (2 m \mu)} v\left((S D P r)_{\max }\right)
$$

where $\mu=\min \left\{m, \max _{i} \operatorname{Rank}\left(Q_{i}\right)\right\}$.

## Complex Quadratic Maximization Problem

Consider

$$
\begin{array}{lll}
(Q P c)_{\max } & \max & z^{H} C z \\
& \text { s.t. } & z^{H} Q_{i} z \leq 1, \quad i=1, \ldots, m \\
& z \in \mathbf{C}^{n}
\end{array}
$$

The SDP relaxation is

$$
\begin{array}{lll}
(S D P c)_{\max } & \max & C \bullet Z \\
& \text { s.t. } & Q_{i} \bullet Z \leq 1, \quad i=1, \ldots, m \\
& Z \succeq 0 .
\end{array}
$$

## A Randomization Method for $\left(Q P c_{\max }\right)$

Similar as before, we propose to solve the problem as follows

1. Generate a random vector $\xi \in \mathbf{C}^{n}$ from the complex-valued normal distribution $\mathcal{N}_{c}\left(0, Z^{*}\right)$.
2. Let

$$
x^{*}(\xi)=\frac{\xi}{\max _{1 \leq i \leq m} \sqrt{\xi^{H} Q_{i} \xi}} .
$$

## Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For $m \geq 2$, we have

$$
v\left(Q P c_{\max }\right) \geq \frac{1}{4 \ln (100 \mu)} v\left(S D P c_{\max }\right)
$$

where $\mu=\sum_{i=1}^{m} \min \left\{\operatorname{rank}\left(Q_{i}\right), \sqrt{m}\right\}$.

## Indefinite Constraints

How about when some of the constraints are indefinite?
There is no finite approximation ratio if more than one $Q_{i}$ 's are indefinite!

Theorem. (He, Luo, Nie, and Z.; 2007)
If exactly one of $Q_{i}$ 's is indefinite, then

$$
v\left(Q P r_{\min }\right) \leq \frac{10^{6} m^{2}}{\pi} v\left(S D P r_{\min }\right)
$$

Theorem. (He, Luo, Nie, and Z.; 2007)
If exactly one of $Q_{i}$ 's is indefinite, then

$$
v\left(Q P c_{\min }\right) \leq 2400 m \cdot v\left(S D P c_{\min }\right)
$$

## Indefinite Quadratic Maximization

The approximation ratio can be arbitrarily large, depending on the data matrices, if more than two $Q_{i}$ 's are indefinite.

Theorem. (Ben-Tal, Nemirovski, Roos; 2002)
If one of the $Q_{i}$ 's is indefinite and $C$ indefinite, then

$$
v\left(Q P r_{\max }\right) \geq \frac{1}{2 \log \left(16 n^{2} m \mu\right)} v\left(S D P r_{\max }\right)
$$

where $\mu=\sum_{i=1}^{m} \min \left\{\operatorname{rank}\left(Q_{i}\right), \sqrt{m}\right\}$.

Theorem. (He, Luo, Nie, and Z.; 2007)
If one of the $Q_{i}$ 's is indefinite and $C$ indefinite, then

$$
v\left(Q P r_{\max }\right) \geq \frac{1}{2 \log (174 m \mu)} v\left(S D P r_{\max }\right)
$$

where $\mu=\sum_{i=1}^{m} \min \left\{\operatorname{rank}\left(Q_{i}\right), \sqrt{m}\right\}$.


Ben-Tal, Nemirovski, Roos conjectured that

$$
\operatorname{Prob}\left\{\xi^{T} A \xi \leq \mathrm{E}\left(\xi^{T} A \xi\right)\right\} \geq \frac{1}{4}, \quad \forall A \text { symmetric matrix }
$$

for i.i.d. $\xi_{i}$ 's, with $\operatorname{Prob}\left\{\xi_{i}=+1\right\}=\operatorname{Prob}\left\{\xi_{i}=-1\right\}=\frac{1}{2}$.
But they only managed to show a lower bound of $\frac{1}{8 n^{2}}$.
We have established a lower bound of $\frac{1}{87}$.

## Put Theory to Work: Simulation Results



Minimization model: one indefinite constraint


Minimization model: many indefinite constraints


Maximization model: one indefinite constraint
full rank with $10 \%$ indefinite


Maximization model: many indefinite constraints

## Randomized Investment: Theory and Practice

Portfolio Selection:
Among $n$ assets, select a set of good ones with right amounts.

Classical notions (due to Markowitz, 1952):

- Return of assets $\quad \rightarrow$ random variables
- Gain on investment $\rightarrow$ mean of the portfolio
- Risk on investment $\rightarrow$ variance of the portfolio


## The Mathematical Model

Let there be $n$ assets, each with return rate $\xi_{i}, i=1, \ldots, n$.
Let the mean of $\xi_{i}$ be $r_{i}=\mathrm{E}\left[\xi_{i}\right], i=1, \ldots, n$.
Let the covariance matrix of $\xi_{i}, i=1, \ldots, n$, be $Q$.
Let the initial budget be $\$ 1$, and the target gain to be $\mu$. Then the model could be

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & r^{T} x \geq \mu \\
& e^{T} x \leq 1 \\
& x \in \text { "a certain desirable constraint set" }
\end{array}
$$

where $e$ is the vector of all one's.

## A Practical Issue

In real life, $n$ can be a large number. A reasonable investor may only wish to handle a small set of assets; that is,
"a small portfolio" - terminology used by Blog, Van der Hoek, Rinnooy Kan, and Timmer, 1983.

How about we explicitly require to choose $k$ out of $n$ assets?
The problem can be formulated as

$$
\begin{array}{lll}
\left(M V_{s}\right) & \text { minimize } & x^{T} Q x \\
\text { subject to } & r^{T} x \geq \mu \\
& e^{T} x \leq 1, \\
& \sum_{i=1}^{n}\left|\operatorname{sign}\left(x_{i}\right)\right| \leq k .
\end{array}
$$

But this is an extremely difficult problem to solve!
It is NP-hard: the only guaranteed method to solve the problem to optimality is basically to enumerate all the possibilities.

If $n=100$ and $k=50$ then there are more than $10^{29}$ possible combinations.

Remember that there are only about $10^{21}$ stars in the entire universe!

## Randomization Approach (I)

Let $x_{i}$ to be the quantity invested in asset $i, i=1, \ldots, n$.
Then, consider

$$
\eta_{i}:=\left\{\begin{aligned}
x_{i}, & \text { with probability } \frac{k}{n} \\
0, & \text { with probability } 1-\frac{k}{n}
\end{aligned}\right.
$$

The portfolio is now essentially $\xi^{T} \eta$, with its variance being

$$
\left(\frac{k}{n}\right)^{2} \times\left(\frac{n-k}{k} \sum_{i=1}^{n}\left(q_{i i}+r_{i}^{2}\right) x_{i}^{2}+x^{T} Q x\right)
$$

The variable $x_{i}$ can be regarded as the seeds of randomization.
Therefore, the seeds optimization problem can be cast as

$$
\begin{array}{cl}
(R P 1) & \text { minimization } \\
& \frac{n-k}{k} \sum_{i=1}^{n}\left(q_{i i}+r_{i}^{2}\right) x_{i}^{2}+x^{T} Q x \\
\text { subject to } & r^{T} x \geq \mu \\
& e^{T} x \leq 1
\end{array}
$$

This is a nice and solvable convex optimization problem.
Strategy: Solve (RP1) and obtain $x$. Then, run $\xi$ for several times.
Pick up the best run as our actual investment policy!

## Randomization Approach (II)

The previous approach will generate a portfolio of about $k$ assets with high probability, but may not be exactly $k$.

Another approach is to only consider in the sample space of choosing $k$ out of $n$ assets.

The random seeds optimization problem is now

$$
\begin{aligned}
(R P 2) \quad \text { minimize } & \frac{n(n-k)}{k(n-1)} \sum_{i=1}^{n}\left(q_{i i}+r_{i}^{2}\right) x_{i}^{2}+\frac{n(n-k)}{k(n-1)} x^{T} Q x \\
& -\frac{n-k}{k(n-1)}\left(r^{T} x\right)^{2} \\
\text { subject to } \quad & r^{T} x \geq \mu \\
& e^{T} x \leq 1
\end{aligned}
$$

## Actual Performances



Number of assets $n=10$.


Number of assets $n=20$.


Number of assets $n=50$.


Number of assets $n=250$.

## Do It Not or Do It Well!

Consider decision problem

$$
\begin{array}{lll}
\left(M V_{q}\right) & \text { minimize } & x^{T} Q x \\
& \text { subject to } & x^{T} Q_{i} x=0, i=1, \ldots, s \\
& x^{T} Q_{i} x=\left\{\begin{array}{ll}
0 & \text { or } \\
\geq 1
\end{array} \quad i=s+1, \ldots, k\right. \\
& x^{T} Q_{i} x \geq 1, i=k+1, \ldots, m
\end{array}
$$

This is an extremely difficult combinatorial problem.

A relaxed version of the problem is

$$
\begin{array}{ll}
(D S D P) & \text { minimize } \\
\text { subject to } & Q \bullet X \\
& Q_{i} \bullet X=0 \text { for } i=1, \ldots, s, \\
& Q_{i} \bullet X=\left\{\begin{array}{ll}
0 & \text { or }, \\
\geq 1
\end{array} \quad i=s+1, \ldots, k,\right. \\
& Q_{i} \bullet X \geq 1 \text { for } i=k+1, \ldots, m, \\
& X \succeq 0
\end{array}
$$

This is still a hard combinatorial problem.
But it has a much better structure.

## A Quality Assurance

## Theorem. (He, Xie, and Z.; 2006)

There is an algorithm that solves $(D S D P)$ such that its objective value is no ore than $k-s$ times the optimal value.

Let such a solution be $\hat{X}$.
We can view this as a randomization seed.
What do we do next?

## A Randomized Rounding Method

Step 1. Generate $\xi \rightarrow \mathcal{N}(0, \hat{X})$.
Step 2. Let

$$
\eta:=\xi / \sqrt{\min _{s+1 \leq i \leq m} \xi^{T} Q_{i} \xi>0}
$$

Theorem. (He, Xie, and Z.; 2006)
The above algorithm yields an $O\left(m^{3}\right)$ approximation with probability of at least $7.5 \%$.

## A Simulation Test



Upper bound on $v\left(M V_{q}\right) / v^{*}, n=33, m=34,1000$ realizations.


The histogram of the previous figure.

## Conclusions

- Randomness is a force of nature
- Beyond Natural Science, so is the case in Management Science
- Randomization can be controlled and used in making decisions
- Theory embraces practice in this endeavor


## URL of the reports

http://www.se.cuhk.edu.hk/~zhang/\#workingpaper

- Semidefnite Relaxation Bounds for Indefinite Homogeneous Quadratic Optimization, Technical Report SEEM2007-01, Department of Systems Engineering \& Engineering Management, The Chinese University of Hong Kong, 2007 (with Simai He, Zhi-Quan Luo, and Jiawang Nie).
- Approximation Bounds for Quadratic Optimization with

Homogeneous Quadratic Constraints, Technical Report SEEM2005-07, Department of Systems Engineering \& Engineering Management, The Chinese University of Hong Kong, 2005 (with Z.Q. Luo, N.D. Sidiropoulos, and P. Tseng).

