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An Example for Randomization

Zhi-Quan Luo, An Isotropic Universal Decentralized Estimation
Scheme for a Bandwidth Constrained Ad Hoc Sensor Network.

IEEE Journal on Selected Areas in Communications, 23 (4), 735 – 744,
2005.
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Data Transmission in Communication

• Ad hoc sensor network with K sensors.

• Each sensor observes a real data in [−U,U ] independently.

• Each sensor sends back the data to the base-station.

• The base-station operates a least square estimation.

Shuzhong Zhang, The Chinese University of Hong Kong
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Matters of Facts

• Sensors have weak batteries.

• The above scheme is an unbiased estimation.

• The statistical error is
U2

K

Shuzhong Zhang, The Chinese University of Hong Kong
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A Randomized Transmission Scheme!

• Each sensor observes the data in binary digits:

a1a2a3 · · · .

• Each sensor, say sensor k, independently tosses a coin to decide
which single binary digit to transmit: ξ = j with probability 1/2j ,
j = 1, 2, ...

• Then, sends this one bit data aξ back to the station.

• The base-station simply adds up all the received digits.

• This is an unbiased estimation, with statistical error

4U2

K

Shuzhong Zhang, The Chinese University of Hong Kong
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Another Example: Transmit Beamforming

A transmitter utilizes an array of n transmitting antennas to
broadcast information within its service area to m radio receivers.

The constraints model the requirement that the total received signal
power at receiver i must be above a given threshold (normalized to 1);
or, equivalently, a signal-to-noise ratio (SNR) condition for receiver i,
as commonly used in data communication.

The objective is to minimize the total transmit power subject to
individual SNR requirements (one at each receiver).

Shuzhong Zhang, The Chinese University of Hong Kong
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Measuring Quality of Decisions

In a minimization problem, the quality measure of a solution x is a
guaranteed bound θ such that

v(x) ≤ θ × v∗

In this context, θ ≥ 1, e.g., θ = 150%.

In a maximization problem, the quality measure of a solution x is a
guaranteed bound θ such that

v(x) ≥ θ × v∗

In this context, θ ≤ 1, e.g., θ = 85%.

The value θ is called approximation ratio of a method.

Shuzhong Zhang, The Chinese University of Hong Kong
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Transmit Beaforming: A Quadratic Model

The problem of transmit beamforming as stated before can be
precisely modelled by homogeneous complex quadratic minimization:

(QPc)min min zHCz

s.t. zHQiz ≥ 1, i = 1, ..., m,

z ∈ Cn.

Shuzhong Zhang, The Chinese University of Hong Kong
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Homogeneous Quadratic Minimization

In general, let us consider:

(QPr)min min xT Cx

s.t. xT Qix ≥ 1, i = 1, ...,m,

x ∈ <n.

All data matrices are assumed to be positive semidefinite.

This problem is clearly NP-hard.

Also, (QPc)min is NP-hard.

Shuzhong Zhang, The Chinese University of Hong Kong
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The SDP Relaxation

Consider the Semidefinite Programming relaxation for (QPr)min

(SDPr)min min C •X

s.t. Qi •X ≥ 1, i = 1, ..., m,

X º 0,

and similarly for (QPc)min:

(SDPc)min min C • Z

s.t. Qi • Z ≥ 1, i = 1, ..., m,

Z º 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Randomized Approach to (QPr)min

But what to do with the solution of a relaxed problem?

Let X∗ be the optimal solution of the SDP relaxation.

1. Generate a random vector ξ ∈ <n from the real-valued normal
distribution N (0, X∗).

2. Let

x∗(ξ) =
ξ

min1≤i≤m

√
ξT Qiξ

.

Shuzhong Zhang, The Chinese University of Hong Kong
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Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For m ≥ 2, we have

v(QPrmin) ≤ 27m2

π
v(SDPrmin).

Moreover, there is an instance such that

v(QPrmin) ≥ 2m2

π2
v(SDPrmin).

Shuzhong Zhang, The Chinese University of Hong Kong
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The Complex Case: (QPc)min

1. Generate a random vector ξ ∈ Cn from the complex-valued
normal distribution Nc(0, Z∗).

2. Let

x∗(ξ) =
ξ

min1≤i≤m

√
ξHQiξ

.

Shuzhong Zhang, The Chinese University of Hong Kong



LNMB, The Netherlands, January 16 – 18, 2007 14

Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For m ≥ 2, we have

v(QPcmin) ≤ 8m · v(SDPcmin).

Moreover, there is an instance such that

v(QPcmin) ≥ m

π2(2 + π/2)2
v(SDPcmin).

Shuzhong Zhang, The Chinese University of Hong Kong
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A Homogeneous Quadratic Maximization Model

The following model is considered by Nemirvoski, Roos, and Terlaky
(1999):

(QPr)max max xT Cx

s.t. xT Qix ≤ 1, i = 1, ..., m,

x ∈ <n,

where Qi º 0, i = 1, ..., m.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Homogeneous Quadratic Maximization Model

The corresponding SDP relaxation is

(SDPr)max max C •X

s.t. Qi •X ≤ 1, i = 1, ..., m,

X º 0.

Theorem. (Nemirovski, Roos, Terlaky; 1999)
It holds that

v((QPr)max) ≥ 1
2 ln(2mµ)

v((SDPr)max),

where µ = min{m,maxi Rank(Qi)}.

Shuzhong Zhang, The Chinese University of Hong Kong
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Complex Quadratic Maximization Problem

Consider

(QPc)max max zHCz

s.t. zHQiz ≤ 1, i = 1, ..., m,

z ∈ Cn.

The SDP relaxation is

(SDPc)max max C • Z

s.t. Qi • Z ≤ 1, i = 1, ..., m,

Z º 0.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Randomization Method for (QPcmax)

Similar as before, we propose to solve the problem as follows

1. Generate a random vector ξ ∈ Cn from the complex-valued
normal distribution Nc(0, Z∗).

2. Let

x∗(ξ) =
ξ

max1≤i≤m

√
ξHQiξ

.

Shuzhong Zhang, The Chinese University of Hong Kong
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Approximation Ratio

Theorem. (Luo, Sidiropoulos, Tseng, and Z.; 2005)
For m ≥ 2, we have

v(QPcmax) ≥ 1
4 ln(100µ)

v(SDPcmax),

where µ =
∑m

i=1 min{rank(Qi),
√

m}.

Shuzhong Zhang, The Chinese University of Hong Kong
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Indefinite Constraints

How about when some of the constraints are indefinite?

There is no finite approximation ratio if more than one Qi’s are
indefinite!

Theorem. (He, Luo, Nie, and Z.; 2007)
If exactly one of Qi’s is indefinite, then

v(QPrmin) ≤ 106m2

π
v(SDPrmin).

Theorem. (He, Luo, Nie, and Z.; 2007)
If exactly one of Qi’s is indefinite, then

v(QPcmin) ≤ 2400m · v(SDPcmin).

Shuzhong Zhang, The Chinese University of Hong Kong
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Indefinite Quadratic Maximization

The approximation ratio can be arbitrarily large, depending on the data
matrices, if more than two Qi’s are indefinite.

Theorem. (Ben-Tal, Nemirovski, Roos; 2002)
If one of the Qi’s is indefinite and C indefinite, then

v(QPrmax) ≥ 1
2 log(16n2 mµ)

v(SDPrmax),

where µ =
∑m

i=1 min{rank(Qi),
√

m}.

Shuzhong Zhang, The Chinese University of Hong Kong
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New Bound for Indefinite Quadratic Maximization

Theorem. (He, Luo, Nie, and Z.; 2007)
If one of the Qi’s is indefinite and C indefinite, then

v(QPrmax) ≥ 1
2 log(174 mµ)

v(SDPrmax),

where µ =
∑m

i=1 min{rank(Qi),
√

m}.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Key Ingredient

Ben-Tal, Nemirovski, Roos conjectured that

Prob
{
ξT Aξ ≤ E

(
ξT Aξ

)} ≥ 1
4
, ∀ A symmetric matrix,

for i.i.d. ξi’s, with Prob {ξi = +1} = Prob {ξi = −1} = 1
2 .

But they only managed to show a lower bound of 1
8n2 .

We have established a lower bound of 1
87 .

Shuzhong Zhang, The Chinese University of Hong Kong
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Put Theory to Work: Simulation Results
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Shuzhong Zhang, The Chinese University of Hong Kong
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Randomized Investment: Theory and Practice

Portfolio Selection:

Among n assets, select a set of good ones with right amounts.

Classical notions (due to Markowitz, 1952):

• Return of assets → random variables

• Gain on investment → mean of the portfolio

• Risk on investment → variance of the portfolio

Shuzhong Zhang, The Chinese University of Hong Kong
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The Mathematical Model

Let there be n assets, each with return rate ξi, i = 1, ..., n.

Let the mean of ξi be ri = E[ξi], i = 1, ..., n.

Let the covariance matrix of ξi, i = 1, ..., n, be Q.

Let the initial budget be $1, and the target gain to be µ. Then the
model could be

minimize xT Qx

subject to rT x ≥ µ

eT x ≤ 1

x ∈ “a certain desirable constraint set”

where e is the vector of all one’s.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Practical Issue

In real life, n can be a large number. A reasonable investor may only
wish to handle a small set of assets; that is,

“a small portfolio” — terminology used by Blog, Van der Hoek,
Rinnooy Kan, and Timmer, 1983.

How about we explicitly require to choose k out of n assets?

The problem can be formulated as

(MVs) minimize xT Qx

subject to rT x ≥ µ,

eT x ≤ 1,
n∑

i=1

|sign(xi)| ≤ k.

Shuzhong Zhang, The Chinese University of Hong Kong
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But this is an extremely difficult problem to solve!

It is NP-hard: the only guaranteed method to solve the problem to
optimality is basically to enumerate all the possibilities.

If n = 100 and k = 50 then there are more than 1029 possible
combinations.

Remember that there are only about 1021 stars in the entire universe!

Shuzhong Zhang, The Chinese University of Hong Kong
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Randomization Approach (I)

Let xi to be the quantity invested in asset i, i = 1, ..., n.

Then, consider

ηi :=





xi, with probability k
n

0, with probability 1− k
n

The portfolio is now essentially ξT η, with its variance being
(

k

n

)2

×
(

n− k

k

n∑

i=1

(qii + r2
i )x2

i + xT Qx

)

Shuzhong Zhang, The Chinese University of Hong Kong
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The variable xi can be regarded as the seeds of randomization.

Therefore, the seeds optimization problem can be cast as

(RP1) minimization n−k
k

n∑
i=1

(qii + r2
i )x2

i + xT Qx

subject to rT x ≥ µ,

eT x ≤ 1.

This is a nice and solvable convex optimization problem.

Strategy: Solve (RP1) and obtain x. Then, run ξ for several times.
Pick up the best run as our actual investment policy!

Shuzhong Zhang, The Chinese University of Hong Kong
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Randomization Approach (II)

The previous approach will generate a portfolio of about k assets with
high probability, but may not be exactly k.

Another approach is to only consider in the sample space of choosing k

out of n assets.

The random seeds optimization problem is now

(RP2) minimize n(n−k)
k(n−1)

n∑
i=1

(qii + r2
i )x2

i + n(n−k)
k(n−1) x

T Qx

− n−k
k(n−1) (r

T x)2

subject to rT x ≥ µ

eT x ≤ 1.

Shuzhong Zhang, The Chinese University of Hong Kong
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Actual Performances
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Do It Not or Do It Well!

Consider decision problem

(MVq) minimize xT Qx

subject to xT Qix = 0, i = 1, ..., s

xT Qix =





0 or

≥ 1
i = s + 1, ..., k

xT Qix ≥ 1, i = k + 1, ..., m

This is an extremely difficult combinatorial problem.

Shuzhong Zhang, The Chinese University of Hong Kong
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A relaxed version of the problem is

(DSDP ) minimize Q •X

subject to Qi •X = 0 for i = 1, ..., s,

Qi •X =





0 or ,

≥ 1
i = s + 1, ..., k,

Qi •X ≥ 1 for i = k + 1, ...,m,

X º 0

This is still a hard combinatorial problem.

But it has a much better structure.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Quality Assurance

Theorem. (He, Xie, and Z.; 2006)
There is an algorithm that solves (DSDP ) such that its objective value
is no ore than k − s times the optimal value.

Let such a solution be X̂.

We can view this as a randomization seed.

What do we do next?

Shuzhong Zhang, The Chinese University of Hong Kong
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A Randomized Rounding Method

Step 1. Generate ξ → N (0, X̂).

Step 2. Let

η := ξ/

√
min

s+1≤i≤m
ξT Qiξ > 0.

Theorem. (He, Xie, and Z.; 2006)
The above algorithm yields an O(m3) approximation with probability
of at least 7.5%.

Shuzhong Zhang, The Chinese University of Hong Kong
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A Simulation Test
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Shuzhong Zhang, The Chinese University of Hong Kong
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Shuzhong Zhang, The Chinese University of Hong Kong
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Conclusions

• Randomness is a force of nature

• Beyond Natural Science, so is the case in Management Science

• Randomization can be controlled and used in making decisions

• Theory embraces practice in this endeavor

Shuzhong Zhang, The Chinese University of Hong Kong
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