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Ranking Systems – Introduction

● Systems in which agents rank for each other are 
aggregated into a social ranking.

● Ranking systems can be defined in the terms of 
a ranking function combining the individual 
votes of the agents into a social ranking of the 
agents.

● Can be seen as a variation of the social choice 
problem where the agents and alternatives 
coincide.
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Social Choice

● The classical social choice setting is comprised 
of:
– A set of agents
– A set of alternatives
– A preference relation for each agent over the set 

of alternatives.
● A social welfare function is a mapping between 

the agents' individual preferences into a social 
ranking over the alternatives.

● The goal: produce “good” social welfare 
functions.
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Social Choice - Example
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Graph Ranking Systems

● Voters and alternatives are the same set.
● Each agent may only make binary votes:  only 

specify some subset of the agents as “good”.
● Preferences of all the agents may be 

represented as a graph, where the agents are 
the vertices and the votes are the edges.

● Applies for ranking WWW pages and eBay 
traders.

PageRank Reputation System
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Ranking systems
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Ranking System – Definition

● Therefore, a (graph) ranking system can simply 
be defined as a functional from the set of all 
graphs, to the set of linear orderings on the 
vertices.

● Such a function may be partial. That is, rank 
only a specific set of graphs, in which case we 
call it a partial ranking system.
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The Axiomatic Approach

● We try to find basic properties (axioms) satisfied 
by ranking systems.

● Encompasses two distinct approaches:
– The normative approach, in which we study sets of 

axioms that should be satisfied by a ranking 
system; and

– The descriptive approach, in which we devise a set 
of axioms that are uniquely satisfied by a known 
ranking system

● We apply both to ranking systems, similarly to  
seminal studies in the classical social choice 
setting (Arrow impossibility theorem, May 
theorem).  
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The Normative Approach

● Arrow's(1963) impossibility theorem is one of 
the most important results of the normative 
approach in Social Choice.

● Does not apply to Ranking Systems.
● In the ranking systems setting, different axioms 

arise from the fact that the voters and 
alternatives coincide.
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The Descriptive Approach

● In social choice, May's Theorem(1952), 
provides an axiomatization of the majority rule.

● This approach is useful in ensuring the axioms 
we suggest are satisfiable.

● We apply this approach towards the 
axiomatization of the PageRank ranking system.
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PigeonRank
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PageRank

● Simplified version of PageRank
● Ranks according to the stationary probabilities 

of a random walk.
● We assume the graph  G=(V,E)  to be strongly 

connected.
● Let  A

G
  be the following matrix:

where  S
G
(v)  is the successor set of  v .



15

PageRank (cont.)

● The PageRank of a graph  G  is defined as the 
principal eigenvector of the matrix A.

● That is, the PageRank of  G  is the vector  x  
satisfying  A

g
x=x.

● The PageRank ranking system PR is the 
ordering on V according to x:

v1PR v2 ⇔ x1≤x 2
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The PageRank Axioms

● Our representation theorem for PageRank 

requires the following five axioms:

– Isomorphism;

– Self-Edge;

– Vote by Committee;

– Collapsing; and

– Proxy
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Isomorphism

● A ranking system satisfying isomorphism is not 
sensitive to renaming of the agents, but only to 
the structure of the graph

● This axiom is similar to the anonymity and 
neutrality axioms of classical social choice.

=
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Self-Edge

● This axiom states that adding a self edge on  v 
strengthens v, but does not change the relative 
ranking of other vertices.

 = 
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Vote by Committee

● The Vote by Committee axiom captures the fact 
that an agent may vote indirectly via any 
number of intermediate agents, each of which 
vote to the agent's original preferences.

● This indirect voting does not change the relative 
ranks of any agents.

a

b

c

a

b

c
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Vote by Committee (cont.)
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Collapsing

● The collapsing axiom captures the fact that voters 
which have the same preferences may be collapsed 
to a single voter with the same preferences, voted 
by all the voters for both.

● We assume the voter sets for the collapsed vertices 
are disjoint and do not include a or b.

● This collapsing only change the rank of a.

a

b

a
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Collapsing (cont.)
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Proxy

● The proxy axiom captures the fact that n voters 
of equal rank who have voted via a proxy 
(another agent) for n alternatives, can achieve 
the same result by directly voting for one 
alternative each.

=

=
x
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Proxy (cont.)
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Soundess

● Proposition: The PageRank ranking system 

PR satisfies isomorphism, self edge, vote by 

committee, collapsing, and proxy.

● This proposition is proven by a simple 

application of linear algebra.
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Completeness

● The question arises whether PageRank is the 
only ranking system satisfying these axioms.
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Completeness

● The question arises whether PageRank is the 
only ranking system satisfying these axioms.

Theorem: Any ranking system that satisfies 
isomorphism, self edge, vote by committee, 
collapsing, and proxy is the PageRank ranking 
system.
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Completeness

● In order to prove completeness, we will first 

show three strong properties that are entailed by 

our five axioms:

– Weak Deletion;

– Strong Deletion; and

– Duplication



29

Weak Deletion
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Weak Deletion (cont.)
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Strong Deletion

x

=

=

=

=

● The Strong Deletion property is a generalization of the proxy 
axiom, allowing removal of a vertex with m sets of t equal 
predecessors, and t successors.

● One element of each equal sets is set to point to each of the 
original successors.

● This change does not affect the relative rank of the 
remaining vertices.
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Strong Deletion (cont.)
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Strong Deletion (cont.)



34

Duplication

● The duplication property allows duplication of an agent's 
successors by any factor.

● The new vertices have the same successors as the old.
● The relative ranking of all vertices except the duplicated 

successors does not change.

a

b

c

d

a

b

c

d



35

Duplication (cont.)
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Duplication (cont.)
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Satisfication

● The three properties are entailed by our axioms:
– Lemma: Let  F  be a ranking system that satisfies 

isomorphism, vote by committee, and proxy. Then,  
F  has the weak deletion property.

– Lemma: Let  F  be a ranking system that satisfies 
collapsing and proxy. Then,  F  has the strong 
deletion property.

– Lemma: Let  F  be a ranking system that satisfies 
isomorphism, vote by committee, collapsing, and 
proxy. Then,  F  has the edge duplication property.
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Completeness

● Do other systems satisfy these five axioms?
● No! PageRank is the only ranking system 

satisfying all 5 axioms.
● The completeness proof is a constructive one. 
● We suggest a (grossly inefficient) algorithm for 

computing relative PageRank.
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Completeness Proof Algorithm

● Fix two vertices a and b
● Manipulate the graph preserving their relative 

ranking.
● Apply further manipulation to modify the relative 

ranking of a and b in one direction.
● a and b can then now be proven of equal rank.
● The relative ranking of a and b in the original graph 

can now be deduced.
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Demonstration of Proof

● Start with the input graph 
and two vertices  a  and  
b  to be compared.

● Add a vertex on each 
edge.

● The relative ranking of a 
and b does not change 
because of the weak 
deletion property
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Demonstration of Proof (cont.)

● Select an original vertex except a 
and b (c in our example), and delete 
all its self edges with a vertex on 
them.

● This does not change the relative 
ranking of a and b due to the self-
edge and weak deletion axioms.

● Next, we use the duplication 
property to duplicate the 
predecessors of c by c's out degree, 
without changing the relative 
ranking of a and b.
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Demonstration of Proof (cont.)

● The isomorphism axiom 
guarantees that c satisfies the 
conditions of the strong 
deletion property.

● Thus, we can apply Strong 
Deletion.

● Due to the strong deletion 
property, this does not change 
the relative ranking of a and b.
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Demonstration of Proof (cont.)

● We apply the strong deletion 
property again to delete the new 
vertices that were successors of c.

● Again, this does not change the 
relative ranking of a and b.

● Note that now again all successors 
and predecessors of the original 
vertices are new vertices, and all 
successors and predecessors of 
the new vertices are original 
vertices.



44

Demonstration of Proof (cont.)

● Repeat the previous steps, selecting a different 
vertex each time, until the only remaining 
original vertices are a and b.
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Demonstration of Proof (cont.)

● Equalize the number of edges with vertices from 
a to b to the number of edges with vertices from 
b to a by duplicating a by the number edges with 
vertices from b to a and vice versa.

● In our example b is duplicated by 3.
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Demonstration of Proof (cont.)

● Assume without loss of generality that b has 
fewer self edges with vertices than a.

● Add self edges with vertices to b, until a and  b 
have the same number of self edges (with 
vertices).
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Completeness Proof (cont.)

● Now, a and b are equally ranked according to 
the isomorphism axiom.

● But, according to the self edge axiom we 
increased the relative rank of b compared to a, 
so we conclude that in the original graph, b was 
ranked lower than a.

● This unique outcome is general, and thus the 
axioms guarantee a unique ranking, and thus 
exactly represent PageRank. 

● QED
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Comment

● We henceforth assume arbitrary graphs, with no 
self-edges.
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Transitive Effects





The rank of your voters should affect your own.
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Strong Transitivity

● Formally, a ranking system F satisfies strong 
transitivity if for every two vertices x,y where F 
ranks x's predecessor set P(x) (strictly) weaker than 
P(y), then F must rank x (strictly) weaker than y.

● We define a predecessor set P(x) as being weaker 
than P(y) as the existence of a 1-1 mapping 
between P(x) and P(y) where every vertex in P(x) is 
mapped to a stronger or equal vertex in P(y). 
Moreover, P(x) is strictly weaker if at least one of 
the comparisons is strict, or the mapping is not 
onto.
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Strong Transitivity
Doesn't always apply

?

?
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Strong Transitivity too Strong?

My Homepage MSN 
Homepage=

Many Pages

Assume: =
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More about Transitivity

● Weak Transitivity
– The idea: Only match predecessors with equal out-

degree.
– We assume nothing about predecessors of 

different out-degrees.
– Otherwise, same as Strong Transitivity.

● PageRank satisfies Weak Transitivity but not 
Strong Transitivity.

● Strong Transitivity can be satisfied by a nontrivial 
Ranking System [Tennenholtz 2004]
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Ranked IIA

● Consider the statement: “An agent with votes 
from two weak agents should be ranked the 
same as one with a vote from one strong agent”.
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Ranked IIA

● Consider the statement: “An agent with votes 
from two weak agents should be ranked the 
same as one with a vote from one strong agent”.

Satisfied
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Ranked IIA

● Consider the statement: “An agent with votes 
from two weak agents should be ranked the 
same as one with a vote from one strong agent”.

Satisfied
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Ranked IIA

● Consider the statement: “An agent with votes 
from two weak agents should be ranked the 
same as one with a vote from one strong agent”.

Not Satisfied
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Ranked IIA

● We would like such comparisons to be consistent.
● That is, in every profile such as the one described 

in the previous slide we should decide >/</= 
consistently.

● This captures the Independence of Irrelevant 
Alternatives (IIA) for ranking systems.

● Can be seen as an ordinality requirement.
● Compare to Arrow's IIA axiom, which considers 

the name but not rank of the agents.
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Impossibility

● Theorem: There exists no general Ranking 
System that satisfies Weak Transitivity and 
Ranked IIA.

● Proof: Constructive.
– We assume existence of such ranking system 

and see graphs it cannot rank consistently.
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Impossibility Proof – Part 1

c

a

a

b d

a

b

c is weakest

Assume b ≤ a

a < b – Contradiction!

→ A vertex with two equal predecessors is stronger than one with 
one weaker and one stronger predecessor.
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Impossibility Proof – Part 2

c

a

a

b d

a

b

c is strongest

Assume a ≤ b

b < a – Contradiction!

→ A vertex with two equal predecessors is weaker  than one with 
one weaker and one stronger predecessor.

→ Contradiction to part 1. QED
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Stronger Impossibility Results

● Our impossibility result exists even in very 
limited domains:
– Small graphs (4 agents are enough with Strong 

Transitivity).
– Strongly connected graphs (as with PageRank).
– Bipartite (buyer/seller) graphs.
– Single vote per agent
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One Vote Bipartite Proof

● In G
1
: a(3) < b(1,1,2)

● In G
2
: a(1,4) < b(2,3)

● In G
3
: b(2,3) < a(1,4)

● Contradiction!
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Transitive effects and IIA?

● We have proven that transitive effects and ranked 
IIA are incompatible.

● However, it turns out that under a different notion 
of transitivity these properties can be satisfied 
together.

● Moreover, the proposed ranking system is 
nontrivial and interesting.
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Quasi-Transitivity

● We define the notion of quasi-transitivity as 
requiring only non-strict comparisons.

● A ranking system F satisfies quasi- transitivity if 
for every two vertices x,y where F ranks x's 
predecessor set P(x) weaker or equal to P(y), 
then F must rank x weaker or equal to y.





67

Positive Result

● Proposition: There exists a nontrivial ranking 
system satisfying Ranked IIA and Quasi-
Transitivity.

● The recursive-indegree ranking system can be 
defined using a simple and efficient algorithm:
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The value function
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Example

0.1X

0.2X

0.112

0.1X0.2X

0.3X

0.1

0

0.2123

0.3212

0.2321 0.1232 0.2123

0.12321

0.1X0.112321

0.3X0.3112321
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Incentives

● Agents may choose to cheat and not report their 
real preferences, in order to improve their 
position.

● Utility of the agents only depends on their own 
rank, not on the rank of other agents.

● Utility is nonincreasing in rank.
● Ties are considered a uniform distribution over 

pure rankings.
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Utility Function

● Formally, the utility function u for the agents 
maps for each agent count the number of 
agents ranked lower than the agent to a utility 
for that ranking:

● The expected utility of an agent with k agents 
ranked strictly below it and m agents ranked the 
same is:

un:ℕℝ

E [un]=un
∗k,m=

1
m ∑

i=k

km-1

uni
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Utility of a ranking

● Let 6 be the ordering of the agents of some 
ranking system F on some graph G=(V,E).

● The utility of agent v in graph G under ranking 
system F is:

uG
F
v=un

∗
∣{u:uv}∣,∣{u:u≃v}∣
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Incentive Compatibility

● Let G=(V,E) and G'=(V,E') be graphs that differ 
only in the outgoing edges from vertex v.

● A ranking system is strongly incentive 
compatible, if for every utility function u:

uG
F
v=uG'

F
v
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Results

● We have classified several types of incentive 
compatible ranking systems, under a wide range 
of axioms.
– This classification has shown that full incentive 

compatibility is impossible for any practical purpose.
● We have also quantified the incentive 

compatibility of known ranking systems, and 
suggested useful new ranking systems that are 
almost incentive compatible.

● Due to lack of time, these results will not be 
presented in this talk.
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Personalized Ranking Systems

● The “client” of the ranking system may also be a 
participant.

● Examples:
– Social Networks
– C2C commerce sites (eBay)
– Trust (PGP).

● It is useful to generate a personalized ranking 
for each individual.

● Many impossibility results are reversed.
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What is a personalized ranking 
system?
● A personalized ranking system is like a general 

ranking system, except:
– Additional parameter: the source, i.e. the agent 

under whose perspective we're ranking.
– Defined only on the graphs where the source s is a 

root, that is there is a directed path from s to all 
vertices.

● Usually we simply assume the graph is strongly 
connected.
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Examples of PRSs

● Distance rule - rank agents based on length of 
shortest path from s.

● Personalized PageRank with damping factor d 
- The PageRank procedure with probability d of 
restarting at vertex s.

● α-Rank – Rank based on fixed point values 
when every vertex is valued at α times the sum 
of its predecessors' value and s is defined as 1, 
where α=1/n2.
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Example of Ranking

s

b

a c

d

e

f

Personalized PageRank
(d=0.2)

d, s, f, b, a, c, e
(d=0.5)

s, b, a, d, f, c, e

Distance
s, a=b, c=d, e=f

α-Rank
s, b, a, d, c, f, e
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Properties of PRSs

● A PRS satisfies self-confidence if the source s is 
ranked stronger than all other vertices.

● The following properties from general ranking 
systems could be adapted to PRSs.
– Strong/Quasi/Weak transitivity
– Ranked IIA
– Strong Incentive Compatibility

● In every case, we require the property to be 
satisfied by all vertices except s.
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Types of Transitivity





Strong QuasiStrong
Quasi



 


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New type of Transitivity

● Assume a ranking system F and two vertices x,y 
(excluding the source) with a mapping f from P(x) 
to P(y) that maps each vertex in P(x) to one at 
least as strong in P(y).
– Quasi-transitivity:  x - y.
– Strong Quasi transitivity: Furthermore, if all of the 

comparisons are strict: x Á y.

– Strong transitivity: Furthermore, if at least one of 
the comparisons is strict or f is not onto: x Á y.
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Classification of PRSs

● Proposition: The distance PRS satisfies self 
confidence, ranked IIA, strong quasi transitivity, and 
strong incentive compatibility, but does not satisfy 
strong transitivity.

● Proposition: The Personalized PageRank ranking 
systems satisfy self confidence iff d>1/2. Moreover, 
Personalized PageRank does not satisfy quasi 
transitivity, ranked IIA or incentive compatibility for 
any damping factor.

● Proposition: The α-Rank PRS satisfies self 
confidence and strong transitivity, but does not 
satisfy ranked IIA or incentive compatibility.
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Summary

Ranked
IIA

Incentive
Compatibility

Strong
Quasi-
Transitivity

α-Rank

Strong
Transitivity

Personalized
PageRank

distance

?

? ??

? ?

PRS Dist a nce P. Pa geRank α-Ra nk
Se lf  Confidence YES for d> 1/2 YES
Ranked I IA YES NO NO
Transit ivit y st rong quasi none st rong
Incent ive  Com p. st rong none none
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The Strong Count System

● The strong count PRS sets s to be the top 
ranked vertex, and then ranks by comparing the 
strongest predecessors, and when equal ranks 
based on the number of strongest 
predecessors. 

● Proposition: The strong count PRS satisfies 
Self Confidence, Ranked IIA, Strong Quasi 
Transitivity and Strong Incentive Compatibility. 
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Generalizing Strong Count

● The Strong Count system can be generalized to 
systems where some ranges of strongest 
predecessor counts are considered equivalent.

● For example, such a system can consider one 
and two strong votes as equivalent, and 
consider three or more strong votes as 
equivalent but strictly stronger.

● Specifically, the distance rule arises when all 
predecessor counts are considered equivalent.

● We will call such systems Generalized Strong 
Count systems.
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Classification Theorem

● Theorem: A PRS satisfies self confidence, 
strong quasi transitivity, RIIA and strong 
incentive compatibility if and only if it is a 
generalized strong count system.

Ranked
IIA

Incentive 
Compat.

Str.
Quasi-
Transitivity

gen.
strong
count

?

? ??

? ?
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Relaxing the Axioms

● All axioms are required for the previous result.
● If we relax any axiom, the system no longer a 

generalized strong count system.
● In particular there are artificial systems with the 

following properties:

Self Confidence YES NO
Ranked IIA YES YES

NO YES
Inc. Comp YES YES
Str.Quasi-Trans
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Relaxing Ranked IIA

● The Path Count PRS ranks vertices based on 
distance, breaking ties by the number of shortest 
directed paths each vertex has from the source.

● Proposition: The path count PRS has the 
following properties:

Self Confidence YES
Ranked IIA NO

YES
Inc. Comp YES
Str.Quasi-Trans
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Relaxing Incentive Compatibility

● The recursive in-degree ranking system can be 
adapted to the personalized setting by giving 
the source vertex a maximal value, as if it has 
in-degree n+1.

● Proposition: The recursive in-degree PRS has 
the following properties:

Self Confidence YES
Ranked IIA YES

YES
Inc. Comp NO
Str.Quasi-Trans
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Ranked
IIA

Incentive
Compatibility

Strong
Quasi-
Transitivity

α-Rank

Strong
Transitivity

Personalized
PageRank

Personalized Ranking Systems 
-- Summary

rec.
indegree

path
count

* Artificial Ranking Systems

*

* **

Gen.
Strong
Count



93

Summary

● We have shown and proven a representation 
theorem for PageRank.

● In the Normative Approach, we have seen both 
impossibility and possibility results.

● We have applied this approach to personalized 
ranking systems, with very positive results.
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Further Research

● New Settings
– Ternary votes (good/bad/none).
– Ranking systems over complete preferences.
– Probabilistic Ranking Systems.

● Descriptive Approach
– Prove PageRank axioms' independence.
– Axiomatization for PageRank with damping factor.
– Axiomatization for Hubs&Authorities.
– Representation theorems in personalized setting.
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Further Research (cont.)

● Normative Approach
– Explore new axioms and prove possibility or 

impossibility results.
● Personalized Ranking Systems

– Consider non-connected case.
– Reputation systems (ternary votes).
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Thank You!


