

Revenue Management in the Airline Passenger Industry

Gerard Kindervater

KLM – AMS/RX

Airline Passenger Revenue Management

- Process of maximizing seat revenue through :
 - pricing
 - market segmentation
 - "different products at different prices"
 - inventory control
 - limit the number of seats available to specific segments
 - anticipate on future cancellations and no-shows

Example

- Paramaribo Amsterdam
- Departure date: 23 January
- Booking date: 17 January

Availability PBM – AMS / 23 JAN

23JAN TUE 0001-0300* PBM AMS

01 PBM AMS 2005 0900* KL 714 J3C3I2Z1S9B4M0 744 0 855 02 PBM AMS 1645 0825* MP 663 C2Z2S0B0M0H0Q000 767 1 1140

Fares PBM – AMS / 23 JAN

PBM-AMS TUE-23JAN07/KL - TAXES/FEES NOT INCLUDED

	CX	FARE	BASIS	C	AP	MIN	/	MAX
1	\mathbf{KL}	449.00R	VLSX3NL	V	#	7	/	1M
2	KL	549.00R	QLSX3NL	Q	#	7	/	1 M
3	KL	649.00R	HLPX3NL	н	#	7	/	3M
4	KL	749.00R	KLPX3NL	K	#	6	/	4 M
5	KL	849.00R	MLPX3NL	Μ	#	5	/	6M
6	KL	1184.00R	BRT3NL	В				
7	KL	1750.00R	SRT3NL	S				
8	KL	1956.00R	ZSX3NL	\mathbf{Z}		7	/	1 M
9	KL	2863.00R	IRT3NL	I				
10	KL	3279.00R	CRT3NL	С				
11	KL	5252.00R	JRT3NL	J				

Flight KL 714 / 23JAN

FLIGHT: KL714 23JAN07 TUE 20:05											
			I	LAST	BID/E	зкт (JPD:1	6JAN/	2309Z	PBM-A	MS
	BD	G	SA	SS	TSFS	AU	CNCL	D BID	•		
С	PB	Μ	3	13	16	42	(6 590			
Μ	PB	Μ	11	426	437	386	118	7 590			
CZ	AB	BI	КT	BA	BND		CAB	BKT	BA	BND	
	С		1	3	2014		М	1	11	558	
			2	3	1009			2	10	515	
			3	2	803			3	9	254	
			4	1	361			4	б	173	
			5	0	0			5	5	84	
								6	4	0	

Pricing (2)

- Market segmentation
 - multiple fare classes with different restrictions

Inventory Control

- Maximize total revenue
 - compute the "optimal" passenger mix
 - number of passengers / route / fare
 - allow (limited) overbooking
 - number of denied boardings (close to) zero

Input (1)

- Schedule and capacity
 - flight departure and arrival times
 - cabin capacities
 - sales restrictions
 - 0 to 360 days before departure

Input (2)

- Demand and cancellation forecast
 - based on observed bookings in the past
 - low level :
 - route (origin / destination / flight list)
 - point of sale
 - passenger type
 - day of week / season
 - fare class
 - overrules for specific departure dates

Models

Notations

- **OD**: dated route (origin, destination, flight list) / fare class / point of sale / passenger type
- for each OD
 - X_{OD}: number of passengers to accept (booking limit)
 - **D**OD : probabilistic demand
 - **FOD** : fare
- for each flight j
 - C_j: remaining capacity (= capacity actual seats sold) (single cabin flights only)

Stochastic Model

• Maximize

 $\boldsymbol{E}(\sum_{OD} F_{OD} \bullet \min\{X_{OD}, D_{OD}\})$

• Subject to $\sum_{OD \supseteq flight j} X_{OD} \leq C_j$ (for all flights j) $X_{OD} \geq 0$ and integer (for all OD's)

Deterministic Model (1)

- Approximation of stochastic model
- Maximize

 $\sum_{OD} F_{OD} \cdot X_{OD}$

• Subject to

 $\sum_{OD \supseteq flight j} X_{OD} \leq C_j$

(for all flights *j*)

 $0 \leq X_{OD} \leq ED_{OD}$

(for all OD's)

Deterministic Model (2)

- Advantages
 - simple (linear programming)
 - well solvable (large instances)
 - easily extendable to multi-cabin flights
- Disadvantages
 - fractional solutions
 - deterministic (average demand)
 - \rightarrow how to handle unexpected booking behavior?

Dual Formulation (1)

- **Decision variables**

 - for each OD : W_{OD} (≥ 0)- for each dated flight j : B_j (≥ 0)
- Minimize

 $\sum_{OD} D_{OD} \bullet W_{OD} + \sum_j C_j \bullet B_j$

Subject to

 $W_{OD} \ge F_{OD} - \sum_{OD \supset flight j} B_j$ (for all OD's)

Dual Formulation (2)

• W_{ODFP} & B_j

- marginal values w.r.t. demand and capacity

• Terminology

- **B**_i : bid price of flight j

- $F_{OD} - \sum_{OD \supseteq vlucht j} B_j$: OD (customer) contribution

 \rightarrow notation : **CuCo_{OD}**

Unexpected Booking Behavior

 Acceptance strategy for passengers willing to fly a certain **OD**

- accept the passengers if

- refuse the passengers if

- conditionally accept the passengers if $CuCo_{OD} = F_{OD} - \sum_{OD} \int_{D} flight \, B_i = 0$

Optimization Frequency

- Best strategy
 - after each accepted booking
 - if expected bookings fail to happen
 - \rightarrow practically infeasible
- Second best strategy
 - at regular time intervals : daily, weekly, ...
 - on demand : heavy booking activity, schedule changes, ...
 - \rightarrow how to avoid loss of revenue?

Expected Marginal Seat Revenue (1)

- Simple & fast revenue management heuristic
 - several variants
 - Belobaba 1989
- Idea : reserve seats for higher valued demand
- Flight based
 - flights are assumed to be independent of each other
- Works remarkably well with any reasonable (flight based) stochastic demand/fare forecast

Expected Marginal Seat Revenue (2)

- Used by
 - many airlines as main tool (Transavia, AirFrance, ...)
 - network carriers as secondary tool (Lufthansa, KLM, ...)
 - forecast based on customer contribution
- Steering mechanism
 - bucket : set of fares / customer values
 - bucket protection : number of seats reserved for passengers paying at least a fare associated with that bucket
- Availability : for each fare return the least availability of all flights in the itinerary

Issues (1)

• Cancellations and no-shows

 \rightarrow flights leave with empty seats

- \rightarrow overbooking of flights
 - \rightarrow limit expected number of denied boardings
 - \rightarrow limit denied boarding costs

 \rightarrow minor changes in the model

Issues (2)

- Buy-down
 - model assumes that passengers willing to pay a specific fare will actually buy a ticket at that fare
 - used to be valid due to fare restrictions, such as
 - minimum / maximum stay
 - refundability
 - ...
 - fare restrictions disappear gradually ...

 flights that are expected to leave with empty seats have bidprice zero

- \rightarrow passengers may and will buy cheapest ticket in the market
 - \rightarrow direct loss of revenue
 - \rightarrow lower demand forecast for higher fares
 - \rightarrow indirect loss of revenue in the future (spiral down)
- new choice / sell-up models incorporate customer behavior
 - mixed integer / nonlinear
- \rightarrow airlines will not always offer low fare tickets in order to fill up their empty flights

