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Outline of Talk

1. The Steady-State Simulation Problem
• What is it?

• Why is it relevant?

• Challenges

2. The Initial Transient Problem
• Is it a serious problem?

• When is it a serious problem?

3. The Basic Approaches to the Initial Transient Problem
• Simulating a stationary version

• Identifying the initial transient period

• Low Bias estimators
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Steady-State Simulation

Y (t) = rate at which “reward”
increases at time t

Assume there exists a (deterministic) constant α
such that

1
t

∫ t

0
Y (s)ds ⇒ α

as t → ∞.

Goal: Compute α
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Examples

Y (t) = number-in-system (in queue) at time t

Y (t) = work-in-process (in manufacturing system)
at time t

Y (t) = I(Q(t) ≥ b)

January 17th, 2007 3



Why the emphasis on steady-state simulation?

To compute α(t, x) = Ex f (X(t)):

α ′(t) = Aα(t)

α(0) = f

To compute α = ∑x π(x) f (x):

0 = πA

s/t ∑x π(x) = 1

α = π f

Analytical and computational tractability
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Modeling Issues

(favoring use of a steady-state formulation)

◮ no need to specify time horizon

◮ no need to specify initial distribution

◮ appropriate in many applications
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Steady-State Simulation: Challenge 1

◮ The steady state mean α involves the

“infinite time behavior” of (Y (s) : s ≥ 0)

◮ How do we compute α based on a

finite-horizon simulation?

◮ Mathematically: E 1
t
∫ t

0 Y (s)ds 6= α

◮ Conceptually: Initial condition is atypical
of steady-state

⇓
“initial transient”

⇓
“initial bias”
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Steady-State Simulation: Challenge 2

In view of Challenge 1, choose time horizon t large

⇓

One observation of process Y over [0, t]

⇓

How to compute an estimator for the variance of

1
t

∫ t

0
Y (s)ds ?
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A Connection between the Two Challenges

Ex f (X(t)) = α + a(x)e−ηt(1 + o(1))

and

cov( f (X∗(0)), f (X∗(t)))
= Eπ fc(X(0)) fc(X(t))
= Eπ fc(X(0)) · E[ fc(X(t))|X(0)]

= Eπ fc(X(0)) · a(X(0))e−ηt(1 + o(1))

◮ used intensively

◮ doesn’t work in presence of non–Markov processes
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Today: We focus on Challenge 1

“The Initial Transient Problem”
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How Serious a problem is the Initial Transient?

For geometrically ergodic (Markov) processes,
Y (t) ⇒ Y (∞) as t → ∞ and

EY (t) = EY (∞) + O(e−ηt)

so

E
1
t

∫ t

0
Y (s)ds − α

=
1
t

∫ ∞

0
{EY (s) − EY (∞)}ds −

1
t

∫ ∞

t
{EY (s) − EY (∞)}ds

= b/t + O(e−ηt)

Also, t1/2
(

1
t
∫ t

0 Y (s)ds − α
)
⇒ σN(0, 1)

var
(

1
t
∫ t

0 Y (s)ds
)

∼ σ2/t
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Conclusion

◮ Initial bias effect is small
relative to sampling variability

◮ For most OR-related steady-state simulations, initial
transient is not serious and can be ignored

Why: Any time-horizon large enough to make the
sampling variability small effectively eliminates the
effect of the initial transient.
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There are exceptions

◮ parallel simulation

◮ long-range dependent processes

◮ multi-modal behavior / nearly decomposable systems

◮ high dimensional systems
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Parallel Simulation

1 

2 

m � � � � � � � � � � � � � � � �
1 2 3 

◮ MSE analysis:

variance
(

1
m ∑m

i=1
1
t
∫ t

0 Yi(s)ds
)

∼ σ2

mt

bias
(

1
m ∑m

i=1
1
t
∫ t

0 Yi(s)ds
)

∼ b
t

◮ If m ≫ t, initial transient becomes dominant effect.

GH 90’s
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Long-range dependence

◮ In the presence of long-range dependence,

var

(
1
t

∫ t

0
Y (s)ds

)
∼

σ2

t2−2H (1/2 < H < 1)

◮ How to allocate c units of computer time in single
processor setting?

m independent replications of length c/m

var

(
1
m

m

∑
i=1

1
c/m

∫ c/m

0
Yi(s)ds

)
≈

σ2m1−2H

c2−2H

◮ Choose m large ...

◮ Same initial bias problem as in parallel simulation
setting
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Nearly Decomposable Systems

P =




P11

ε
P22

. . .
. . .

ε
Pdd




◮ Particularly challenging context . . .

◮ Any statistically based “detection rule” can be fooled

◮ Arises in Markov chain Monte Carlo context

◮ Random re-start
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High-Dimensional Systems

−→
Y (t) = (Y1(t), . . . ,Yd(t))

տ ր
independent

‖P(Yi(t) ∈ ·) − P(Yi(∞) ∈ ·)‖y ∼ ce−λ t

‖P(
−→
Y (t) ∈ ·) − P(

−→
Y (∞) ∈ ·)‖ ∼ dce−λ t

G05

Slows down

convergence rate...

ր

There are models for which
initial transient is significant
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3 Approaches to Dealing with the Initial Transient

◮ Approach 1 Simulate a stationary version of Y
exact simulation / perfect simulation

◮ Approach 2 Identify the initial transient interval
[0, t]

◮ Approach 3 Modify the estimator so as to reduce
the “initial bias” effect
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Approach 1: Simulate a stationary version of Y

Y (t) = f (X(t))

◮ Choose X(0) ∼ π
◮ Don’t know π!

◮ Can we sample from π based on the ability to do a
dynamic simulation of X?

◮ Exact/ perfect simulation

π(·) =
E
∫ τ

0 I(X(s) ∈ ·)ds

E τ
=

∫ ∞

0
P (X(s) ∈ ·| τ > s)

P(τ > s)ds
E τ

= P(X(Z) ∈ ·)
AGT 92

Z ∼
P(τ > ·)

E τ
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◮ Are there any interesting problem classes for which

P(τ > ·)/ E τ
is known, but simulating from π(·) directly is hard?

◮ Yes . . .

Pm(x, y) ≥ εφ(y)

Pm(x, y) = εφ(y) + (1 − ε)q(x, y)

P(τ = mk) = ε(1 − ε)k−1

τ
m geometric

AGT (1992)

Propp/Wilson (1996)
...
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A Statistically-based alternative

◮ Simulate Markov process X over [0, t]

◮ Compute π̂t(x) = 1
t
∫ t

0 I(X(s) = x)ds

◮ Generate Zt ∼ π̂t ◮ Put Tt = inf{s ≥ 0 : X(s) = Zt}

◮ Then,

‖(X(s) : Tt ≤ s ≤ Tt + t) − (X∗(s) : 0 ≤ s ≤ t)‖ → 0 G93

◮ E ( 1
t−T (t)

∫ t
T (t) f (X(s))ds) = α + O( 1

t2) (A + G 06)

 
X(t) 

Z 

Tt 
t 

1 2 3 
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Approach 2: Identify initial transient interval [0, t0]

◮ Use analytic bounds to compute t0 for which

||P(Y (t0) ∈ ·) − P(Y (∞) ∈ ·)|| < ε
For many geometrically ergodic processes,

Ex f (X(t)) = α + a(x)e−γt+iθ t(1 + o(1))

where γ > 0. Here, z = −γ + iθ is second largest (in
modulus) eigenvalue of A.

• For highly structured models, one can sometimes compute

asymptotics for z (Diaconis)

• For reversible systems, one can compute analytic bounds

on z

• For regenerative systems, one can obtain bounds on

||P(Y (t) ∈ ·) − P(Y (∞) ∈ ·)||
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◮ Use an approximating analytic model to identify t0:

Y (t)
D
≈ Ỹ (t)

Single-server FIFO queue in “heavy-traffic”:

Y (t)
D
≈ RBM(t)

t0 = c(1 − ρ)−2

For infinite-server queue in “heavy-traffic”:

Y (t)
D
≈ Gaussian process

t0 ≈ F−1(1 − ε)
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Problems

◮ good approximations hard to compute for most mod-
els (networks)

Possible remedy:

• simulate simplified model first; determine t0 based
on simulation

• then simulate real model

◮ note that time to stationarity t0 depends on functional
being computed

t0 for “number-in-system”

6= t0 for “buffer loss”

γ for “number-in-system”

6= γ̃ for exponential moments of “number-in-system”
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Statistically Based Methods

◮ Many proposals have been made

e.g. discard initial observations until the first one left
is neither the maximum nor the minimum of the re-
maining observations (Conway 1963)

◮ Problematic both in theory and in practice
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A Basic Difficulty

◮ In general, one has only one realization of the initial
transient on which to base one’s statistical analysis.

◮ Any rigorous rule needs to “model” the initial tran-
sient
e.g., autoregressive process

Xn+1 = ρXn + εn+1
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Regenerative Processes

a(t) = EY (t)

a = b + F ∗ a (renewal eqn)

Solution is

a = U ∗ b

If b, F are known, choose t0 such that |a(t0) − a(∞)| < ε

If b, F are unknown, estimate these from cycles simulated:

F̂n(t) = 1
n ∑n

i=1 I(τi ≤ t)

b̂n(t) = 1
n ∑n

i=1 bi(t)

Choose t̂ so that

|(Û + b̂)(̂t) − (Û + b̂)(∞)| < ε BG06, KG06
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Approach 3: Low Bias Estimators

Attempt 1

E
1
t

∫ t

0
Y (s)ds = α +

b
t

+ O(e−λ t)

Estimate α, b via a linear regression

Use α̂ from linear regression

Doesn’t work ...

As for Approach 2, must “model” initial transient
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Regenerative Processes

T1 T2 T3 

Y = (Y (s) : 0 ≤ s ≤ Tn)

(
∫ Ti

Ti−1
Y (s)ds, Ti − Ti−1 : 1 ≤ i ≤ n)

iid

◮ No initial transient on time scale of regenerative cy-
cles

◮ Structure of initial transient highly dependent on time
scale used
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How does initial bias manifest itself on time scale
of regenerative cycles?

α =
E
∫ T1

0 Y (s)ds

E T1
,

EW
E T

αn =
W n

T n
= g(W n, T n)

Eαn 6= g(EW n, ET n)
տ

non-linearity bias

Solutions:

◮ Taylor expand ...
↓
estimate

Eαn = α −
1
n

E[(W − αT )T ]

(E T )2 + O(n−2) CL75

◮ Jack-knife
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On time scale of simulated time:

E
1
t

∫ t

0
Y (s)ds = α +

b
t

+ O(e−λ t)

where

b =
E
∫ T1

0 s[Y (s) − α]ds

E T1

estimate from
cycles completed by t

ր

G 90
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Typical Theoretical Analysis

E α̂L(t) = α + o(1/τ)

var α̂L(t) ∼ var α̂(t) as t → ∞.

Hence, α̂L(t) is better...
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A More Careful Analysis

E α̂(t) = α +
b
t

+ o(1/t)

E α̂L(t) = α + o(1/t)

var α̂(t) =
σ2

t
+

c1

t2 + o(1/t2)

var α̂L(t) =
σ2

t
+

c2

t2 + o(1/t2)

MSE(α̂(t)) =
σ2

t
+

c1 + b2

t2 + o(1/t2)

MSE(α̂L(t)) =
σ2

t
+

c2

t2 + o(1/t2)

Need to check that c2 < c1 + b2 in single replication
setting; When a large number of processors are used, αL(t)
is clearly better A+G 07
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Conclusions

◮ There are problems in which initial transient can be a
serious issue

◮ There are rigorously supported methods for reducing
the effect of the initial transient

even in single replication setting!

◮ Ideas apply even in nonstationary settings, e.g., when
to initialize simulations focused on “rush hours”
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