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Rare–event Simulation

Goal : Compute p = P (A), where A is “rare”

Applications :

Reliability modeling

Dependability systems

Communications networks

Supply chains

Finance
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Outline of Talk:

Review of rare event simulation

State independent changes of measure for random walks

State dependent changes of measure

Lyapunov bounds on importance variances

Extension to expectations

Connection to optimal control
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Conventional Sampling and

Rare–event Simulation

Method : Generate iid copies I1, I2, . . . , In of IA.

pn =
1

n

n∑

j=1

Ij

Analysis :

n1/2(pn − p) ⇒
√
p(1 − p)N(0, 1)

pn
D
≈ p+

√
p(1 − p)

n
N(0, 1)

As p ↓ 0, absolute error ↓ 0

relative error ↑ ∞
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Importance Sampling

Change the sampling distribution from P to Q

p = EpIA =

∫

Ω

IA(ω)P (dω)

=

∫

Ω

IA(ω)L(ω)Q(dω)

= EQIAL
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Zero–variance Change of Measure

If we select

Q∗(dω) =
IA(ω)P (dω)

P (A)

= P (dω|A)

then

LIA = P (A) Q∗ a.s.

Zero–variance!

Lunteren Conference 6 of 40



Moral of the Story :

Choose an easily generated Q that is close to Q∗
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Theoretical Analysis

� Family of problem instances : (Pn(An) : n ≥ 1)

� with rare–event property : pn = Pn(An) → 0 as

n→ ∞

� Importance Sampling estimator : pn = ẼnIAn
Ln

� “Bounded Relative Variance” ( strongly efficient )

sup
n≥1

ṽarnIAn
Ln

p2
n

<∞

� “Logarithmic efficiency”

limn→∞

log ẼnIAn
L2

n

log pn

= 2

Lunteren Conference 8 of 40



Computing Exit Probabilities for

Markov Chains

X = (Xn : n ≥ 0) S–valued Markov chain

T = inf{n ≥ 0 : Xn ∈ A ∪D} ( “exit time” )

Goal : Compute p(x) = Px(XT ∈ A, T <∞)
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Applications

� Px(T <∞) ; ruin probabilities

� mean time to failure ( Px(T < τ) )

� regenerative analysis ( Ex

∫ τ

0
I(X(s) ∈ A)ds )

� Px(Xn ∈ B) ( hitting time for “space–time” chain

((i,Xi), i ≥ 0) to hit {n} × B )
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Description of Zero–variance

Change of Measure

Conditional dynamics of X given {XT ∈ A, T <∞} are

Markovian

Px(X1 ∈ dx1, . . . , Xn ∈ dxn|XT ∈ A, n ≤ T <∞)

= Q∗
x(X2 ∈ dx2, . . . , Xn ∈ dxn)

where Q∗(x, dy) = P (x, dy)p(y)/p(x)

In general, change of measure is state-dependent
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Asymptotic Description of the Conditional

Distribution for Light–tailed Random Walks

Sn = Y1 + . . . + Yn

Y1, Y2, . . . iid with EY1 = 0

ψ(θ) = logE exp(θYi) <∞

Goal : Compute pn = P (Sn > nx) (x > 0)
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������������

n

nx

Sn

� P (Y1 ∈ dy1, . . . , Yk ∈ dyk|Sn > nx)

→
k∏

i=1

exp (θ(x)yi − ψ(θ(x)))P (Yi ∈ dyi)

as n→ ∞ ( where ψ′(θ(x)) = x )
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� Suggests simulating Y1, Y2, . . . Yn as iid using

“exponentially twisted” distribution

exp (θ(x)y − ψ(θ(x)))P (Y ∈ dy)

� Distribution of increments is state–independent

( “hard–wired” , “static” , “blind” )

Lunteren Conference 14 of 40



Level–Crossing Probability

Sn = Y1 + . . . + Yn

Y1, Y2, . . . iid with EY1 < 0

ψ(θ) = logE exp(θYi) <∞

Goal : Compute p(x) = P (T (x) <∞) where

T (x) = inf{n ≥ 0 : Sn > x}

Arises in analysis of G/G/1 queue, insurance risk

theory, sequential analysis
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������������

n

x

Sn

� P (Y1 ∈ dy1, . . . Yk ∈ dyk|T (x) <∞)

→
∏k

i=1 exp(θ∗yi)P (Yi ∈ dyi)

as x→ ∞ where θ∗ > 0 satisfies ψ(θ∗) = 0
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� Suggests simulating Y1, Y2, . . . up to T (x) as iid

using “exponentially twisted” distribution

exp(θ∗y)P (Y ∈ dy)

� Distribution of increments is state–independent
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Asymptotic Efficiency

� P (Sn > nx) logarithmic efficiency

� P (T (x) <∞) bounded relative variance
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Sn = Y1 + . . . + Yn

Y1, Y2, . . . , Yn iid with EY1 = 0

E exp(θY1) <∞

Goal : Compute pn = P (Sn < na or Sn > nb) (a < 0 < b)

P (Sn > nb) ∼
1√

2πnσ(θ(b))
exp (−θ(b)nb+ nψ(θ(b)))

P (Sn < na) ∼
1√

2πnσ(θ(a))
exp (−θ(a)na+ nψ(θ(a)))
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Assume θ(b)b− ψ(θ(b)) < θ(a) − ψ(θ(a)).

Then,

P (Y1 ∈ dy1, . . . Yk ∈ dyk|Sn < na or Sn > nb)

→

k∏

i=1

exp(θ(b)yi − ψ(θ(x)))P (Yi ∈ dyi)

-
n

na

nb

Sn

�����������
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� Suggests simulating Y1, Y2, . . . Yn as iid using

“exponentially twisted” distribution

exp (θ(b)y − ψ(θ(b)))P (Y ∈ dy)

� A disaster! Variance inflation, not variance

reduction
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Level Crossing Probabilities for

Heavy–Tailed Random Walks

Sn = Y1 + . . . + Yn

Y1, Y2, . . . iid with EY1 = 0

P (Y1 > x) ∼ cx−α as x→ ∞

Goal : Compute p(x) = P (T (x) <∞) where

T (x) = inf{n ≥ 0 : Sn > x}

-
n

x

Sn

HHHHH

6

Tn
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Level Crossing Probabilities for

Heavy–Tailed Random Walks

� P (Y1 ∈ dy1, . . . Yk ∈ dyk|T (x) <∞)

→
∏k

i=1 P (Yi ∈ dyi) as x→ ∞

� no obvious means of implementing this asymptotic

description
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Return to state–dependent

( zero–variance ) change of measure :

Simulate X according to

Q∗(x, dy) = P (x, dy)
p(y)

p(x)

� Approximate Q∗ by using a good approximation to

p(·)

� An alternative :

Note that Q∗(x, dy) = Px(X1 ∈ dy|XT ∈ A, T <∞)

Use conditional distribution of X1 given

{XT ∈ A, T <∞}
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Return to Light–tailed Random Walk

pn = P (Sn > nx) (x > 0)

Here,

Q∗(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy)
P (Sn−i−1 > nx− z − y)

P (Sn−i > nx− z)

One can use the approximation suggested by (exact)

large deviations :

P (Sj > w) ≈
1√

2πjσ(θ(w/j))

· exp(−θ(w/j)w + jψ(θ(w/j)))

Leads to change of measure that is difficult to simulate
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The alternative : Simulate Yi+1 from “exponentially

twisted” distribution

exp (θ((nx− z)/(n− i))y − ψ(θ((nx− z)/(n− i))·P (Y ∈ dy)

i.e. Simulate Yi+1 with the exponential twist having

drift that maximizes the likelihood of ending at level nx

at time n, given that Si = z.
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Theorem ( Blanchet and G ( 06 ) ) : Under suitable

regularity conditions, both the above algorithms enjoy

bounded relative variance.

Remark : The state–independent algorithm has a

relative variance that increases in n.
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Return to Level Crossing Probability for

Light–tailed Random Walk

p(x) = P (T (x) <∞) (x > 0)

Here,

Q∗(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy)p(x− z − y)/p(x− z).

When Y is non-lattice and a positive root θ∗ of ψ(θ∗) = 0

exists, p(w) ∼ ce−θ∗w as w → ∞. So,

p(x− z − y)

p(x− z)
→ eθ∗y as x→ ∞

Alternative approach leads to same result : Simulate

Y1, Y2, . . . iid according to “exponentially twisted”

distribution eθ∗yP (Y ∈ dy).

Lunteren Conference 28 of 40



Return to Two–sided Exit Probability

pn = P (Sn > nb or Sn < na)

Here, Q∗(Yi+1 ∈ dy|Si = z)

= P (Y ∈ dy)
P (Sn−i−1 > nb− z − y or Sn−i−1 < na− z − y)

P (Sn−i > nb− z or Sn−i < na− z)

� If z is close enough to na, the preferred exit

boundary is na.

� If one plugs approximations for probabilities

directly in, variate generation becomes difficult.

� A strongly efficient algorithm can be developed

that uses only exponential twisting.
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Return to Level Crossing Probabilities for

Heavy–tailed Random Walk

Sn = Y1 + . . . + Yn

Y1, Y2, . . . iid with EY1 < 0

P (Y1 > x) ∼ cx−α as x→ ∞

Q∗(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy)p(x−y−z)/p(x−z)

Heavy–tail asymptotic for p :

p(w) ∼ 1
|EY |

∫∞

−∞
P (Y > s)ds , v(w)

Approximate Q∗ by Q :

Q(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy)v(x−y− z)/w(x− z)

where w(·) is the normalization constant

w(·) =
∫

R
P (Y ∈ dy)v(· − y)
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Alternatively,

Q∗(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy|Y +M > x− z)

where M = max(Sn : n ≥ 0). Then,

Q(Yi+1 ∈ dy|Si = z) = P (Y ∈ dy|Y + Z > x− z)

where P (Z > ·) = v(·) ≈ P (M > ·).

Use acceptance–rejection to generate such a Y ( based

on mixture density formed from density of Y ).
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Theorem ( Blanchet & G ( 2006 ) )

i) If Y ∈ S∗, then the above algorithm enjoys bounded

relative variance as x→ ∞.

ii) Furthermore, under further restrictions on Y , the

expected number of operations, required to

simulate under Q is O(x).
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Details on Theoretical Analysis

Need to upper bound variance of IAL under Q. Put

s∗(z) = EQ
z IAL

2

Suppose that Q takes the form

Q(y, dz) = P (y, dz)v(z)/w(y)

Proposition ( Blanchet & G ( 06 ) ) Suppose there exists

a non–negative h ≥ ǫ satisfying

w(y)
∫
P (y, dz)v(z)h(z) ≤ h(y)v(y)2

for y ∈ Ac. Then,

s∗(z)

v2(z)
≤

ǫ−1h(z)

infx∈A v2(x)
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Using a more refined Lyapunov analysis than the

above, one can show that bounded relative variance is

accomplished when :

� w(x)/v(x) → 1 as x→ ∞

� There exists r ≤ 1/2 and x0 <∞ such that

w(x) ≤ v(x) + rPx(X1 ∈ A), x ≥ x0, x ∈ (A ∪D)c

A D
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Extension to Expectations

u∗(x) = Ex

τ∑

j=0

f(Xj) exp

(
j−1∑

l=0

h(Xl)

)

u∗ satisfies

u(x) = f(x) + eh(x)

∫

S

P (x, dy)u(y)

1 =

∫

S

P (x, dy)
eh(x)u∗(y)

u∗(x) − f(x)

,

∫

S

Q∗(x, dy)
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If

W =

τ∑

j=0

f(Xj) exp

(
j−1∑

l=0

h(Xl)

)
Lj

then

W = u∗(X0) a.s.

There exists a zero - variance Markovian change - of -

measure for such expectations (Awad, Rubinstein, and

G ( 06 )).
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� Importance algorithm may be non–terminating

� Zero–variance change–of–measure may not be

unique
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Connection to Dynamic Programming

Q(θ, x, dy) = P (x, dy)l−1(θ, x, y)

Set

s(θ, z) = EQ(θ)[W
2|X0 = z]

What is the optimal choice of θ(z)?
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Optimal change–of–measure within class (Q(θ) : θ ∈ Λ)

is determined by HJB equation

s∗(z) = inf
θ∈Λ

[
f(z)2 + 2f(z)eh(z)

∫

S

P (z, dw)u∗(w)

+e2h(z)

∫

S

P (z, dw)l(θ, z, w)s∗(w)

]

( Dupuis, Wang )
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Conclusions:

� In general, a change of measure intended to

produce bounded relative variance should exhibit

state dependence in the transition structure, even

for problems described in terms of random walks

� When analytic approximations to the rare event

probabilities exist, these approximations suggest

natural state-dependent changes of measure (for

both light-tailed and heavy-tailed systems).

� The optimal state-dependent change of measure

(within a parametric family of importance kernels)

can be computed as the solution to an optimal

control problem (Dupuis and Wang)
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