State-dependent Importance Sampling and Rare-event Simulation

Peter W. Glynn Stanford University

Lunteren Conference, January 16th, 2007

Goal : Compute p = P(A), where A is "rare" Applications : Reliability modeling Dependability systems Communications networks Supply chains

Finance

- Review of rare event simulation
- State independent changes of measure for random walks
- State dependent changes of measure
- Lyapunov bounds on importance variances
- Extension to expectations
- Connection to optimal control

Conventional Sampling and Rare–event Simulation

Method : Generate iid copies I_1, I_2, \ldots, I_n of I_A .

$$p_n = \frac{1}{n} \sum_{j=1}^n I_j$$

Analysis :

$$n^{1/2}(p_n - p) \Rightarrow \sqrt{p(1-p)}N(0,1)$$
$$p_n \stackrel{\mathcal{D}}{\approx} p + \sqrt{\frac{p(1-p)}{n}}N(0,1)$$

As $p \downarrow 0$, absolute error $\downarrow 0$ relative error $\uparrow \infty$

Importance Sampling

Change the sampling distribution from *P* to *Q*

$$p = E_p I_A = \int_{\Omega} I_A(\omega) P(d\omega)$$
$$= \int_{\Omega} I_A(\omega) L(\omega) Q(d\omega)$$
$$= E_Q I_A L$$

Zero-variance Change of Measure

If we select

$$Q^*(d\omega) = \frac{I_A(\omega)P(d\omega)}{P(A)}$$
$$= P(d\omega|A)$$

then

$$LI_A = P(A)$$
 Q^* a.s.
Zero–variance!

6 of 40

Choose an easily generated Q that is close to Q^*

Theoretical Analysis

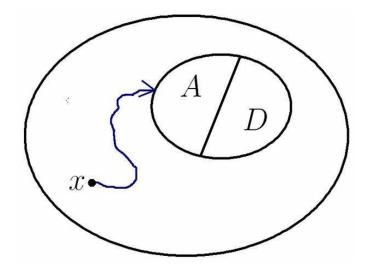
- Family of problem instances : $(P_n(A_n) : n \ge 1)$
- with rare–event property : $p_n = P_n(A_n) \to 0$ as $n \to \infty$
- Importance Sampling estimator : $p_n = \widetilde{E_n} I_{A_n} L_n$
- "Bounded Relative Variance" (strongly efficient)

$$\sup_{n\geq 1}\frac{\widetilde{\operatorname{var}}_n I_{A_n} L_n}{p_n^2} < \infty$$

"Logarithmic efficiency"

$$\underline{\lim}_{n \to \infty} \frac{\log \widetilde{E}_n I_{A_n} L_n^2}{\log p_n} = 2$$

Computing Exit Probabilities for Markov Chains



 $X = (X_n : n \ge 0) \quad \text{S-valued Markov chain}$ $T = \inf\{n \ge 0 : X_n \in A \cup D\} \quad (\text{ "exit time"})$ $\text{Goal : Compute } p(x) = P_x(X_T \in A, T < \infty)$

- $P_x(T < \infty)$; ruin probabilities
- mean time to failure ($P_x(T < \tau)$)
- regenerative analysis ($E_x \int_0^{\tau} I(X(s) \in A) ds$)
- $P_x(X_n \in B)$ (hitting time for "space–time" chain $((i, X_i), i \ge 0)$ to hit $\{n\} \times B$)

Description of Zero–variance Change of Measure

Conditional dynamics of *X* given $\{X_T \in A, T < \infty\}$ are Markovian

$$P_x(X_1 \in dx_1, \dots, X_n \in dx_n | X_T \in A, n \le T < \infty)$$
$$= Q_x^*(X_2 \in dx_2, \dots, X_n \in dx_n)$$
where $Q^*(x, dy) = P(x, dy)p(y)/p(x)$

In general, change of measure is state-dependent

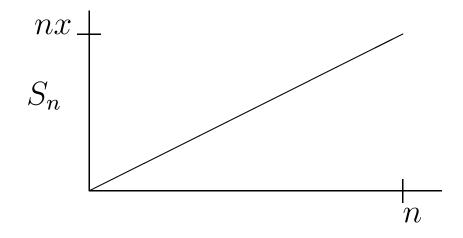
Asymptotic Description of the Conditional Distribution for Light–tailed Random Walks

$$S_n = Y_1 + \ldots + Y_n$$

$$Y_1, Y_2, \ldots \text{ iid with } EY_1 = 0$$

$$\psi(\theta) = \log E \exp(\theta Y_i) < \infty$$

Goal : Compute $p_n = P(S_n > nx)$ (x > 0)



•
$$P(Y_1 \in dy_1, \dots, Y_k \in dy_k | S_n > nx)$$

 $\rightarrow \prod_{i=1}^k \exp(\theta(x)y_i - \psi(\theta(x))) P(Y_i \in dy_i)$
as $n \rightarrow \infty$ (where $\psi'(\theta(x)) = x$)

Lunteren Conference

13 of 40

• Suggests simulating Y_1, Y_2, \ldots, Y_n as iid using "exponentially twisted" distribution

$$\exp\left(\theta(x)y - \psi(\theta(x))\right) P(Y \in dy)$$

 Distribution of increments is state-independent ("hard-wired", "static", "blind")

Level–Crossing Probability

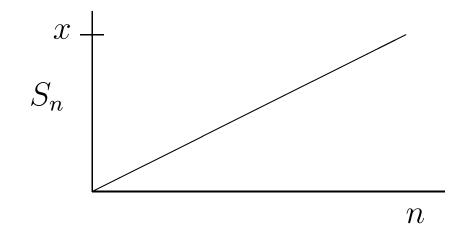
$$S_n = Y_1 + \ldots + Y_n$$

 Y_1, Y_2, \dots iid with $EY_1 < 0$ $\psi(\theta) = \log E \exp(\theta Y_i) < \infty$

Goal : Compute $p(x) = P(T(x) < \infty)$ where

$$T(x) = \inf\{n \ge 0 : S_n > x\}$$

Arises in analysis of G/G/1 queue, insurance risk theory, sequential analysis



•
$$P(Y_1 \in dy_1, \dots, Y_k \in dy_k | T(x) < \infty)$$

 $\rightarrow \prod_{i=1}^k \exp(\theta^* y_i) P(Y_i \in dy_i)$
as $x \rightarrow \infty$ where $\theta^* > 0$ satisfies $\psi(\theta^*) = 0$

Lunteren Conference

16 of 40

Suggests simulating Y₁, Y₂, ... up to T(x) as iid using "exponentially twisted" distribution

 $\exp(\theta^* y) P(Y \in dy)$

Distribution of increments is state-independent

Asymptotic Efficiency

P(S_n > nx) logarithmic efficiency
 P(T(x) < ∞) bounded relative variance

$$S_n = Y_1 + \ldots + Y_n$$

$$Y_1, Y_2, \ldots, Y_n \text{ iid with } EY_1 = 0$$

$$E \exp(\theta Y_1) < \infty$$

Goal : Compute $p_n = P(S_n < na \text{ or } S_n > nb) (a < 0 < b)$

$$P(S_n > nb) \sim \frac{1}{\sqrt{2\pi n\sigma(\theta(b))}} \exp\left(-\theta(b)nb + n\psi(\theta(b))\right)$$

$$P(S_n < na) \sim \frac{1}{\sqrt{2\pi n\sigma(\theta(a))}} \exp\left(-\theta(a)na + n\psi(\theta(a))\right)$$

19 of 40

Assume $\theta(b)b - \psi(\theta(b)) < \theta(a) - \psi(\theta(a))$. Then,

na

 $P(Y_{1} \in dy_{1}, \dots, Y_{k} \in dy_{k} | S_{n} < na \text{ or } S_{n} > nb)$ $\rightarrow \prod_{i=1}^{k} \exp(\theta(b)y_{i} - \psi(\theta(x)))P(Y_{i} \in dy_{i})$ nb S_{n} nb

• Suggests simulating Y_1, Y_2, \ldots, Y_n as iid using "exponentially twisted" distribution

 $\exp\left(\theta(b)y - \psi(\theta(b))\right) P(Y \in dy)$

A disaster! Variance inflation, not variance reduction

Level Crossing Probabilities for Heavy–Tailed Random Walks

$$S_{n} = Y_{1} + \ldots + Y_{n}$$

$$Y_{1}, Y_{2}, \ldots \text{ iid with } EY_{1} = 0$$

$$P(Y_{1} > x) \sim cx^{-\alpha} \text{ as } x \to \infty$$
Goal : Compute $p(x) = P(T(x) < \infty)$ where
$$T(x) = \inf\{n \ge 0 : S_{n} > x\}$$

$$x + - - - S_{n}$$

$$T_{n}$$

Level Crossing Probabilities for Heavy–Tailed Random Walks

- $P(Y_1 \in dy_1, \dots, Y_k \in dy_k | T(x) < \infty)$ $\to \prod_{i=1}^k P(Y_i \in dy_i) \quad \text{as } x \to \infty$
- no obvious means of implementing this asymptotic description

Return to state-dependent (zero-variance) change of measure :

Simulate X according to

$$Q^*(x, dy) = P(x, dy) \frac{p(y)}{p(x)}$$

- Approximate Q^* by using a good approximation to $p(\cdot)$
- An alternative : Note that $Q^*(x, dy) = P_x(X_1 \in dy | X_T \in A, T < \infty)$ Use conditional distribution of X_1 given $\{X_T \in A, T < \infty\}$

Return to Light-tailed Random Walk

$$p_n = P(S_n > nx) \quad (x > 0)$$

Here,

$$Q^*(Y_{i+1} \in dy | S_i = z) = P(Y \in dy) \frac{P(S_{n-i-1} > nx - z - y)}{P(S_{n-i} > nx - z)}$$

One can use the approximation suggested by (exact) large deviations :

$$P(S_j > w) \approx \frac{1}{\sqrt{2\pi j\sigma(\theta(w/j))}} \cdot \exp(-\theta(w/j)w + j\psi(\theta(w/j)))$$

Leads to change of measure that is difficult to simulate

25 of 40

The alternative : Simulate Y_{i+1} from "exponentially twisted" distribution

$$\exp\left(\theta((nx-z)/(n-i))y - \psi(\theta((nx-z)/(n-i)) \cdot P(Y \in dy)\right)$$

i.e. Simulate Y_{i+1} with the exponential twist having drift that maximizes the likelihood of ending at level nxat time n, given that $S_i = z$.

Theorem (Blanchet and G (06)): Under suitable regularity conditions, both the above algorithms enjoy bounded relative variance.

Remark : The state–independent algorithm has a relative variance that increases in *n*.

Return to Level Crossing Probability for Light-tailed Random Walk

$$p(x) = P(T(x) < \infty) \qquad (x > 0)$$

Here,

$$Q^*(Y_{i+1} \in dy | S_i = z) = P(Y \in dy)p(x - z - y)/p(x - z).$$

When *Y* is non-lattice and a positive root θ^* of $\psi(\theta^*) = 0$ exists, $p(w) \sim ce^{-\theta^* w}$ as $w \to \infty$. So,

$$\frac{p(x-z-y)}{p(x-z)} \to e^{\theta^* y} \quad \text{as } x \to \infty$$

Alternative approach leads to same result : Simulate Y_1, Y_2, \ldots iid according to "exponentially twisted" distribution $e^{\theta^* y} P(Y \in dy)$.

Return to Two-sided Exit Probability

$$p_n = P(S_n > nb \text{ or } S_n < na)$$

Here, $Q^*(Y_{i+1} \in dy | S_i = z)$
$$= P(Y \in dy) \frac{P(S_{n-i-1} > nb - z - y \text{ or } S_{n-i-1} < na - z - y)}{P(S_{n-i} > nb - z \text{ or } S_{n-i} < na - z)}$$

- If *z* is close enough to *na*, the preferred exit boundary is *na*.
- If one plugs approximations for probabilities directly in, variate generation becomes difficult.
- A strongly efficient algorithm can be developed that uses only exponential twisting.

Return to Level Crossing Probabilities for Heavy-tailed Random Walk

$$S_{n} = Y_{1} + \ldots + Y_{n}$$

$$Y_{1}, Y_{2}, \ldots \text{ iid with } EY_{1} < 0$$

$$P(Y_{1} > x) \sim cx^{-\alpha} \text{ as } x \to \infty$$

$$Q^{*}(Y_{i+1} \in dy | S_{i} = z) = P(Y \in dy)p(x - y - z)/p(x - z)$$
Heavy-tail asymptotic for p :

$$p(w) \sim \frac{1}{|EY|} \int_{-\infty}^{\infty} P(Y > s) ds \triangleq v(w)$$

Approximate Q^* by Q:

$$Q(Y_{i+1} \in dy | S_i = z) = P(Y \in dy)v(x - y - z)/w(x - z)$$

where $w(\cdot)$ is the normalization constant

$$w(\cdot) = \int_R P(Y \in dy)v(\cdot - y)$$

Alternatively,

$$Q^*(Y_{i+1} \in dy | S_i = z) = P(Y \in dy | Y + M > x - z)$$

where $M = \max(S_n : n \ge 0)$. Then,
$$Q(Y_{i+1} \in dy | S_i = z) = P(Y \in dy | Y + Z > x - z)$$

where $P(Z > \cdot) = v(\cdot) \approx P(M > \cdot)$.

Use acceptance–rejection to generate such a Y (based on mixture density formed from density of Y).

Theorem (Blanchet & G (2006))

- i) If $Y \in S^*$, then the above algorithm enjoys bounded relative variance as $x \to \infty$.
- ii) Furthermore, under further restrictions on Y, the expected number of operations, required to simulate under Q is O(x).

Details on Theoretical Analysis

Need to upper bound variance of $I_A L$ under Q. Put

$$s^*(z) = E_z^Q I_A L^2$$

Suppose that *Q* takes the form

$$Q(y, dz) = P(y, dz)v(z)/w(y)$$

Proposition (Blanchet & G (06)) Suppose there exists a non–negative $h \ge \epsilon$ satisfying

$$w(y)\int P(y,dz)v(z)h(z)\leq h(y)v(y)^2$$

for $y \in A^c$. Then,

$$\frac{s^*(z)}{v^2(z)} \le \frac{\epsilon^{-1}h(z)}{\inf_{x \in A} v^2(x)}$$

Using a more refined Lyapunov analysis than the above, one can show that bounded relative variance is accomplished when :

•
$$w(x)/v(x) \to 1 \text{ as } x \to \infty$$

There exists $r \leq 1/2$ and $x_0 < \infty$ such that $w(x) \leq v(x) + rP_x(X_1 \in A), \quad x \geq x_0, \ x \in (A \cup D)^c$ A + D

Extension to Expectations

$$u^*(x) = E_x \sum_{j=0}^{\tau} f(X_j) \exp\left(\sum_{l=0}^{j-1} h(X_l)\right)$$

 u^* satisfies

$$u(x) = f(x) + e^{h(x)} \int_{S} P(x, dy) u(y)$$
$$1 = \int_{S} P(x, dy) \frac{e^{h(x)} u^{*}(y)}{u^{*}(x) - f(x)}$$
$$\triangleq \int_{S} Q^{*}(x, dy)$$

If

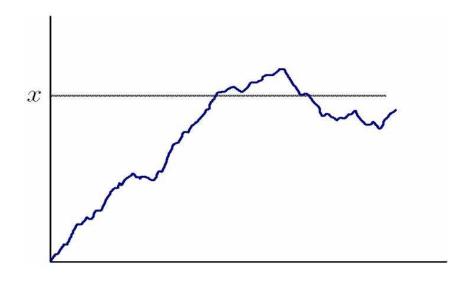
$$W = \sum_{j=0}^{\tau} f(X_j) \exp\left(\sum_{l=0}^{j-1} h(X_l)\right) L_j$$

then

$$W = u^*(X_0)$$
 a.s.

There exists a zero - variance Markovian change - of - measure for such expectations (Awad, Rubinstein, and G (06)).

Importance algorithm may be non-terminating



 Zero-variance change-of-measure may not be unique

Connection to Dynamic Programming

$$Q(\theta, x, dy) = P(x, dy)l^{-1}(\theta, x, y)$$

Set

$$s(\theta, z) = E_{Q(\theta)}[W^2|X_0 = z]$$

What is the optimal choice of $\theta(z)$?

38 of 40

Optimal change–of–measure within class $(Q(\theta) : \theta \in \Lambda)$ is determined by HJB equation

$$s^{*}(z) = \inf_{\theta \in \Lambda} \left[f(z)^{2} + 2f(z)e^{h(z)} \int_{S} P(z, dw)u^{*}(w) + e^{2h(z)} \int_{S} P(z, dw)l(\theta, z, w)s^{*}(w) \right]$$

(Dupuis, Wang)

Conclusions:

- In general, a change of measure intended to produce bounded relative variance should exhibit state dependence in the transition structure, even for problems described in terms of random walks
- When analytic approximations to the rare event probabilities exist, these approximations suggest natural state-dependent changes of measure (for both light-tailed and heavy-tailed systems).
- The optimal state-dependent change of measure (within a parametric family of importance kernels) can be computed as the solution to an optimal control problem (Dupuis and Wang)