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Introduction column generation



Column generation

min cx

s.t.

Ax ≤ b

x ≥ 0

I Problem: Number of variables too big
to consider explicitly

I In optimal solution, most variables will
have value 0

I Only subset of all variables is
interesting

Column generation will only consider
variables that have potential to decrease
objective.

Variable can decrease objective if reduced
cost are negative.
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Column generation (2)

Split the problem into two problems:

Master problem

min cx′

s.t.

Ax′ ≤ b

x′ ≥ 0

where x′ ⊆ x

Other variables are
zero by definition

Sub problem

I Determine new variable to add to master
problem

I Do not consider all variables explicitly, but
find variable with minimum reduced cost

I If min reduced cost < 0
I Add variable to x′

I Resolve master problem

I If min reduced cost ≥ 0 → finished
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Gate planning



Problem description

We have a set of flights:

I Arrival and departure time

I Type of aircraft

I Region of origin/destination (Schengen/EU/Non-EU)

I Preferences of airline

I Ground handler

And we have a set of gates

I Possible regions (Schengen/EU/Non-EU)

I Possible aircraft

I Possible ground handlers



Problem description (2)

Goal:

I find assignment that is as robust as possible

that satisfies:

I region constraints

I aircraft constraints

I ground handler constraints

I time constraints



Problem description (3)

What is robust?:

Time

GATE 1

GATE 2

≥ 20 minutes
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Problem description (4)

Cost function:

I High for small separation times

I Low for long separation times

I Descending steeply in beginning

Refinements:

I Certain combinations of flights are more desirable

I Certain assignments are less desirable



Gate plans

Distinguish only between gate types (not between individual gates)

Gate plan:

I Set of flights assigned to the same gate

I Designed for a given type of gate

I Cost of gate plan = cost due to corresponding separation
times

We can incorporate all mentioned constraints within valid gate
plans



The model

Min.

N∑
i=1

cixi

+
V∑

v=1

QvUAFv

s.t.

UAFv +

N∑
i=1

gvixi = 1 for v = 1, . . . , V

N∑
i=1

eiaxi = Sa for a = 1, . . . , A

N∑
i=1

V∑
v=1

A∑
a=1

pvakeiagvixi ≥ Pk for k = 1, . . . ,K

xi ∈ {0, 1}

{}

i = 1, . . . , N
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Solving

We use column generation to solve this problem.

For each gate type a we want to find a new gate plan with
minimum reduced cost.

Create graph Ga:

I Vertex for every possible flight v

I Arc (v, v′) if flight v′ can be placed after flight v

I Set cost arc (v, v′) to contribution flight v to reduced cost

Observations:

I Path ↔ Gate plan

I Path cost → Reduced cost of gate plan
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Solving (2)

Solution might be fractional → Convert to ILP

Enhancement of column generation

Creating extra columns during column generation:

I Solving pricing problem resulted in shortest path

I Disable flights from this new gate plan one by one and solve
shortest path again

Add the unique columns to the ILP problem and solve it:

I Speeds up the ILP solving tremendously

I Gives better solutions: ZLP ≤ ZGA ≤ ZILP ′ ≤ ZILP



Conclusion gate planning

I Second phase: assign gate plans to gates

I Fast enough (some minutes for solving complete day)

I Small integrality gap
I Additional feature:

I Automatic splitting of flights



Bus planning



Problem description

I Some stands don’t have air bridge
I These passengers need to be transported via buses

I Transporting busload of passengers to/from plane we call Trip

I Lot of similarities with Gate planning:
Flight → Trip
Gate type → Shift
Gate plan → Bus plan

I Differences:
I Bus drivers must get some breaks during shift
I There are two types of buses



The model

Min.

M∑
j=1

cjyj +
T∑

t=1

RtUATt s.t.

UATt +
M∑

j=1

htjyj = 1 t = 1 . . . T

M∑
j=1

fjbyj ≤ Tb b = 1 . . . B

0 ≤ yj ≤ 1 i = 1, . . . ,M



Solving

Pricing problem similar to gate planning:

I Difference: Some shifts have mandatory break
I Given trip t1 and t2. If break in between possible:

I Add break vertex BVt1,t2
I Add arc (t1,BVt1,t2) with same cost as arc (t1, t2)
I Add arc (BVt1,t2 , t2) with cost 0.

I With minor modifications to the algorithm we will find
shortest path including exactly one break vertex.



Integrating the two problems



Integrating the two problems

Some advantages:

I Possibility of feed-back from bus planning to gate planning

I Better overall robustness

I Reducing number of buses needed

Some problems:

I Deal with trips that need not be driven

I Problem becomes considerably larger
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Solving

Currently working on this...
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Questions?
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