The Lunteren Conference, Jan. 19, 2005 The MDP Complexity

A Strongly Polynomial-Time Algorithm for Solving the Markov
Decision Problem with Fixed Discount Factor

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/"yyye

Thanks to Kahn Mason, Ben Van Roy and Pete Veinott for many insightful

discussions on this subject.




The Lunteren Conference, Jan. 19, 2005 The MDP Complexity

Outline .

Linear programming, complexity, the Markov decision problem;

Central path and its geometry;
Combinatorial interior-point algorithm for the MDP;

Complexity analysis of the algorithm;




The Lunteren Conference, Jan. 19, 2005 The MDP Complexity

Complexity Theory I

e a notion of input size,
e a set of basic operations, and
® a cost for each basic operation.

The last two allow one to define the cost of a computation.

The Blum-Shub-Smale model is what we use in this talk, with exact real arithmetic

operations (i.e., ignoring round-off errors).
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Linear Programming I

Primal: minimize CTX

subjectto Ax = b,
x > 0,

Dual: maximize by

subjectto s =c — Aly > 0,

e Ac R™" ce R"and b € R™ are given; x € R and

(y € R™,s € R"™) are unknown vectors; s is often called dual slack vector.

e We denote the LP problem as LP (A, b, c).
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e The LP problem is polynomial solvable under the Turing model of
computation, proved by Khachiyan and also by Karmarkar and many others.
But the problem, whether there is a polynomial-time algorithm for LP under

the BSS model of computation, remains open.

There are some research developments relating complexity of interior-point
algorithms with certain “condition or difficulty” measures for linear
programming (see Renegar/Pena, Epelman/Freund/Vera, Ho/Ttlincel,

Todd/Tilncel/Ye, Cucker/Cheung/Cucker, Gonzaga/Hugo, Ye, etc).

The “layered-step interior point” (LIP) algorithm (Vavasis/Ye,
Megiddo/Mizuno/Tsuchiya, Ho/Tuncel, Monteiro/Tsuchiya, etc) interleaves

small steps with longer layered least-squares (LLS) steps to follow the central

path. The algorithm terminates in O(n>°c(A)) iterations.

c(A) = O(log(xa) + logn). (1)
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The Markov Decision Problem .

minimize (ct)fx! A+ (e)Tx 4+ +(ck)Txk
subjectto (I — OPH)x! .+ (I —-0P)x'+. +(I —0P%xF =

x! Coxt . xk >

Here, z* € R" represents the decision variables of all states for action ¢, [ is
the n. X n identity matrix, and P?, i = 1,...,k,isann X n Markov matrix
(eP’ = eand P* > ().

A=[I—-6P*, . ... I—0P* cR"¥"k

b=ecR" and c=(c’;...;c") e R"™.
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The Dual of MDP .

And its dual (by adding slack variables) is

maximize eTy

subjectto (I — Py +s!

(I — 0Py 4 &

(I —O0PF)Ty 4 sk

Discount factor: 6 < 1.

For simplicity, consider k = 2 throughout this talk.
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Complexity Results on MDP I

Value-lter. Policy-Iter. LP-Alg. Combinatorial IPA

n2 . L 1_,09, ) , n2-5 . n0'5L(P", ¢t 0)




The Lunteren Conference, Jan. 19, 2005 The MDP Complexity

New Result on MDP .

Value-lter. Policy-Iter. Combinatorial IPA

2 L(P'.c.0) , . 1.5 2.5
- n n=? In =

n
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Termination: Why L(-)?

All polynomial algorithms are continuous algorithms and it denotes how small the

error should be in order to round an exact optimal solution (policy)?

CTX < 2—L(A,b,c)

This talk presents a combinatorial interior-point algorithm for MDP.

10
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We remark that the condition measure X 4 mentioned earlier cannot be bounded

by 1/(1 — 6):

A =

Here, for any given 6 > 0, ||(Ag) ! Al| can be arbitrarily large as ¢ — 0"

when
1—60 1—-6(1—c¢)
0 —0 - €

Ap =

In fact, all other condition measures used in complexity analyses for general LP
can be arbitrarily bad for the MDP.

11



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 12

The Two-Action MDP .

Comparing to the LP standard form,

A=[I-0P' I—6P? ¢ R"*"

b=ecR"” and c=(c';c?) cR"

Any feasible basis

(Ag) ' =I —-0P) ' =T+0P +6°P? +....
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MDP Properties I

Both the primal and dual MDPs have interior feasible points if 0 < 6 < 1.

The feasible set of the primal MDP is bounded. More precisely,

1 2)_

where x = (x"; X

Let X be a basic feasible solution of the MDP. Then, any basic variable, say

X;, has its value

Let B* and /N * be the optimal partition for the MDP. Then, B* contains at

least one feasible basis, i.e., |[B*| > nand |[N*| < n;and forany j € B*

13
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there is an optimal solution x™ such that

> 1.

*
Xj—

e Let Ap be any feasible basis and A be any submatrix of the rest columns

of the MDP constraint matrix, then

2n\/n
I(45)~ Ay < 22V

14
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The partition of LP variables I

e If LP(A,b,c) has an optimal solution pair, then there exists a unique index
set B* C {1,....,n}and N* = {1,....,n} \ B*, such that the optimal

faces are

AB*XB* = b, X B* 2 0, XN* — 0

sgr =cpg» — AL.y =0, sy-=cn- — ALy > 0.

e This partition is called the strict complementarity partition:

Ap+Xp+ = b7 xp >0, xny»=0

sgr =cp- — AL.y =0, sy~ =cpy+ — AL.y > 0.
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The Central Path of LP .

Ax

Al'y +s
SXe

x > 0,

The solution to these equations, written (x(t), ¥ (1), s()), is called the central
path point for 1, and the aggregate of all points, as x ranges from 0 to oo, is the

central path of the LP problem.

16
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The following is a geometric property of the central path:

Lemma 1 Let (x(s1), y (1), 8(42)) and (x('), y (1), 8()) be two centra
path points such that 0 < 1/ < p. Then for any 1,

s(p');: < ns(p)i and  x(p'); < na(p);.

In particular, if (x*, y*, s*) is optimal, then, for any ;4 > 0 and any 1,

*

s; <ns(u); and x; < nx(p);.

17
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Figure 1: Individual variables on the central path

18
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Corollary 1 For any p € (O, uo], the central path pair of the MDP satisfies

1—-6 .
and s(u); > ——p foreveryj =1,...,2n;
n

and s(u); < 2nup forevey j € B*.

1
2n

X(ft); >

19
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Thus, X

0

Primal initial interior point I

x") =T —-0P) e, i=1,2

IS an interior feasible point for the MDP and

1
XO Z 59 © RQTL.

20
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Dual initial interior point I

= —7ve and sV =

where 7y is chosen sufficiently large such that

C

s'>0 and v>

21
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Potential of the initial point pair I

Denote ;10 = (x°)1's" /2n and consider the TTY potential function
2n
o(x,s) = 2nlog(s’ x) Zlog s;X;) > 2nlog(2n).
7=1
n n
p(x°,s%) = 2nlog(c’x" 4+ (1 — Q)Q) — Zlog(sgxg)

< 2nlog(c'x” +~-n) Zlog(s?/Q) (sincexg > 1/2)

= 2nlog(2n) — Z log

22
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< 2nlog(2n) —

< 2nlog(2n) —

= 2nlog(2n) + 2nlog(

The MDP Complexity

j=1
2n

1—46
N
j=1 T

-0

23



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 24

Approximately centered pair I

“Approximately centered” point (X, y, S, ) such that

n(x,y,s,u) = |SXe/n— el < no,

where, say, 179 = 0.2 throughout this talk.
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Complexity to compute an initial central-path point I

Therefore, using the primal-dual potential reduction algorithm, we can generate

an (approximate) central path point (XO, yo, SO) such that

n(Xoayoa SOMLLO) S Mo -

in at most O (n(log %)) interior-point algorithm iterations where each iteration

uses O(n3) arithmetic operations,

25
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Combinatorial Algorithm: Separation of variables I

~10n2(1 + o)
N FE i e

For any given approximate central path point (X, y, s) such that

77(X7 y,S, :u) S o,

Snp

Tip)=1{i s; < =57}

8nu-g}

Ja(p) ={j: 85 >

and .J5 (1) be the rest of indices. Thus, forany j; € J1 (i) and j3 € J3(u), we

have
Sjl <

Sjs
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Forany j € B™*, we observe

~ 4 8
i 2np < §2n,u = %

s();

Therefore,

Lemma 2 Let .J; (1) be defined above at any 0 < p < 1Y, Then, every variable
of B*isin Jy(u) or B* C Jy () forany 0 < p < p°, and, thereby, J1 (1)

always contains an optimal basis.
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Combinatorial Algorithm: Elimination of variables I

If J3(1t) is not empty, we can now eliminate all its primal variables and dual

constraints from further consideration, since they must be all in /N* and take zero

value at any optimal solution.

To restore the primal feasibility after elimination, we solve the least squares

problem:

Iglin HDi/Q(leH subjectto  A;10x; = Asxs.
X1

Then, we have

Al(Xl -+ 5X1) -+ A2X2 = A1X1 —+ A2X2 + A3X3 = b.

28
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Combinatorial Algorithm: Restoration of the central path I

Lemma 3 Notonly A1 (x7 + 6x1) + Aoxo = band (x1 + dx1;X2) > 0, but

also
U((X1 + 5x1;X2)7y7 (31382)7/0 < 2.

That is, they are a near central-path point pair for the same p of the MDP after

eliminating every primal variables and dual constraints in J3 ().

29
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How to Make J5(u) # ()

We apply a predictor-corrector method of Mizuno-Todd-Ye.

1 1
e = ID7Y2(55 +8)|| = ——
v e v e

is strictly greater than 0. Let

| DY25%|

\/ﬁeo}.

a = maX{O,l —
To

(2)

(3)

30
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and
S = s + aos.

If & < 1, we have the new iterate (X, ¥, S) nearly centered and strictly feasible.

31
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Lemma 4 If ¥ > 0, then there must be a variable indexed j such that j € N*,

and the central-path value

(1 _ A),,0
s(u); > YL MU= O o
J 2\/5712'5

for all i € (0, u].

Now consider two cases:
\/ﬁEO

Tlo

v/ne’

o
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Complexity: Case 1 I

and s(p); > Wil'e

where index j € N* is the one singled out in Lemma 4. In this case, we
continue apply the predictor-corrector path-following algorithm reducing ¢ from

,uO. Thus, as soon as

Thatis, j € J3(u).

33
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Complexity: Case 2 I
v/ne’

JT= (1 = 0)(1 — a)u®
l1—a= and s(p); > i o — )1 = &)
10 2v/2n3

where again indexj is the one singled out in Lemma 4. Note that the first

predictor step has reduced ,uo to (1 — &),uo. Then, we continue apply the

predictor-corrector algorithm reducing pt from (1 — @),LLO. As soon as

< MoV 1—=mno(l —0)
(1—a)u® — 8v/2n4g ’

we have again

s(p); > 4np - g.

Thatis, j € J3(u).

34
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Complexity to Make J5(p) # ()

In at most O(n0'5(1 og L@ + log n)) predictor-corrector interior-point algorithm
iterations, we have J3 () # 0.

35
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Figure 2: Markov Decision Problem

36
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Complexity Theorem I

Theorem 1 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most . major eliminating steps, and each step uses

O(n%®(log -5 + logn)) predictor-corrector interior-point algorithm iterations.

Using the Karmakar rank-one updating scheme, the average number of arithmetic

operations of each predictor-corrector interior-point iteration is O(n2'5). Thus,

Theorem 2 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most O (n*(log =5 + log n)) arithmetic operations.
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Extensions to general MDP I

Corollary 2 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most (k — 1)n major eliminating steps, and each step

uses O((nk)"?(log 1= + log n + log k)) predictor-corrector interior-point

algorithm iterations, where n is the number of states and £ is the number of

actions for each state. The total arithmetic operations to solve the MDP is
41.2 1

bounded by O(n*k“(log =5 + logn +logk)).
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What's next .

e Get rid of 6?

e Does 6 have to play a role in the complexity of the MDP?

39



