A Strongly Polynomial-Time Algorithm for Solving the Markov Decision Problem with Fixed Discount Factor

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye

Thanks to Kahn Mason, Ben Van Roy and Pete Veinott for many insightful discussions on this subject.

Outline

- Linear programming, complexity, the Markov decision problem;
- Central path and its geometry;
- Combinatorial interior-point algorithm for the MDP;
- Complexity analysis of the algorithm;

Complexity Theory

- a notion of input size,
- a set of basic operations, and
- a cost for each basic operation.

The last two allow one to define the cost of a computation.

The Blum-Shub-Smale model is what we use in this talk, with exact real arithmetic operations (i.e., ignoring round-off errors).

Linear Programming

$$
\begin{aligned}
\text { Primal: minimize } & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Dual: maximize $\quad \mathbf{b}^{T} \mathbf{y}$

$$
\text { subject to } \quad \mathbf{s}=\mathbf{c}-A^{T} \mathbf{y} \geq \mathbf{0}
$$

- $A \in \mathbf{R}^{m \times n}, \mathbf{c} \in \mathbf{R}^{n}$ and $\mathbf{b} \in \mathbf{R}^{m}$ are given; $\mathbf{x} \in \mathbf{R}^{n}$ and $\left(\mathbf{y} \in \mathbf{R}^{m}, \mathbf{s} \in \mathbf{R}^{n}\right)$ are unknown vectors; \mathbf{s} is often called dual slack vector.
- We denote the LP problem as $L P(A, \mathbf{b}, \mathbf{c})$.
- The LP problem is polynomial solvable under the Turing model of computation, proved by Khachiyan and also by Karmarkar and many others. But the problem, whether there is a polynomial-time algorithm for LP under the BSS model of computation, remains open.
- There are some research developments relating complexity of interior-point algorithms with certain "condition or difficulty" measures for linear programming (see Renegar/Peña, Epelman/Freund/Vera, Ho/Tüncel, Todd/Tüncel/Ye, Cucker/Cheung/Cucker, Gonzaga/Hugo, Ye, etc).
- The "layered-step interior point" (LIP) algorithm (Vavasis/Ye, Megiddo/Mizuno/Tsuchiya, Ho/Tüncel, Monteiro/Tsuchiya, etc) interleaves small steps with longer layered least-squares (LLS) steps to follow the central path. The algorithm terminates in $O\left(n^{3.5} c(A)\right)$ iterations.

$$
\begin{equation*}
c(A)=O\left(\log \left(\bar{\chi}_{A}\right)+\log n\right) . \tag{1}
\end{equation*}
$$

The Markov Decision Problem

$$
\begin{array}{rcccc}
\text { minimize } & \left(\mathbf{c}^{1}\right)^{T} \mathbf{x}^{1} & .+\left(\mathbf{c}^{i}\right)^{T} \mathbf{x}^{i}+. & +\left(\mathbf{c}^{k}\right)^{T} \mathbf{x}^{k} & \\
\text { subject to } & \left(I-\theta P^{1}\right) \mathbf{x}^{1} & .+\left(I-\theta P^{i}\right) \mathbf{x}^{i}+. & +\left(I-\theta P^{k}\right) \mathbf{x}^{k} & =\mathbf{e}, \\
\mathbf{x}^{1} & . \mathbf{x}^{i} . & \mathbf{x}^{k} & \geq \mathbf{0} .
\end{array}
$$

Here, $x^{i} \in \mathbf{R}^{n}$ represents the decision variables of all states for action i, I is the $n \times n$ identity matrix, and $P^{i}, i=1, \ldots, k$, is an $n \times n$ Markov matrix ($\mathbf{e} P^{i}=\mathbf{e}$ and $P^{i} \geq 0$).

$$
A=\left[I-\theta P^{1}, \ldots, I-\theta P^{k}\right] \in \mathbf{R}^{n \times n k}
$$

$$
\mathbf{b}=\mathbf{e} \in \mathbf{R}^{n}, \quad \text { and } \quad \mathbf{c}=\left(\mathbf{c}^{1} ; \ldots ; \mathbf{c}^{k}\right) \in \mathbf{R}^{n k}
$$

The Dual of MDP

And its dual (by adding slack variables) is

$$
\begin{array}{cccc}
\operatorname{maximize} & \mathbf{e}^{T} \mathbf{y} & \\
\text { subject to } & \left(I-\theta P^{1}\right)^{T} \mathbf{y}+\mathbf{s}^{1} & = & \mathbf{c}^{1} \\
\ldots & \cdots & \cdots \\
\left(I-\theta P^{i}\right)^{T} \mathbf{y}+\mathbf{s}^{i} & = & \mathbf{c}^{i} \\
\ldots & \cdots & \ldots \\
\left(I-\theta P^{k}\right)^{T} \mathbf{y}+\mathbf{s}^{k} & = & \mathbf{c}^{k} \\
\mathbf{s}^{1}, \ldots, \mathbf{s}^{i}, \ldots, \mathbf{s}^{k} & \geq & \mathbf{0}
\end{array}
$$

Discount factor: $\theta<1$.
For simplicity, consider $k=2$ throughout this talk.

Complexity Results on MDP

Value-Iter.	Policy-Iter.	LP-Alg.	Combinatorial IPA
$n^{2} \cdot \frac{L\left(P^{i}, c^{i}, \theta\right)}{1-\theta}$	$n^{3} \cdot \frac{2^{n}}{n}$	$n^{2.5} \cdot n^{0.5} L\left(P^{i}, c^{i}, \theta\right)$	

New Result on MDP

Value-Iter.	Policy-Iter.	LP-Alg.	Combinatorial IPA
$n^{2} \cdot \frac{L\left(P^{i}, c^{i}, \theta\right)}{1-\theta}$	$n^{3} \cdot \frac{2^{n}}{n}$	$n^{2.5} \cdot n^{0.5} L\left(P^{i}, c^{i}, \theta\right)$	$n^{1.5} \cdot n^{2.5} \ln \frac{1}{1-\theta}$

Termination: Why $L(\cdot)$?

All polynomial algorithms are continuous algorithms and it denotes how small the error should be in order to round an exact optimal solution (policy)?

$$
\mathbf{c}^{T} \mathbf{x}-z^{*} \leq 2^{-L(A, \mathbf{b}, \mathbf{c})}
$$

or

$$
\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y} \leq 2^{-L(A, \mathbf{b}, \mathbf{c})}
$$

This talk presents a combinatorial interior-point algorithm for MDP.

We remark that the condition measure $\bar{\chi}_{A}$ mentioned earlier cannot be bounded by $1 /(1-\theta)$:

$$
A=\left[\begin{array}{cccc}
1-\theta & 0 & 1-\theta(1-\epsilon) & 0 \\
0 & 1-\theta & -\theta \cdot \epsilon & 1-\theta
\end{array}\right]
$$

Here, for any given $\theta>0,\left\|\left(A_{B}\right)^{-1} A\right\|$ can be arbitrarily large as $\epsilon \rightarrow 0^{+}$ when

$$
A_{B}=\left(\begin{array}{cc}
1-\theta & 1-\theta(1-\epsilon) \\
0 & -\theta \cdot \epsilon
\end{array}\right)
$$

In fact, all other condition measures used in complexity analyses for general LP can be arbitrarily bad for the MDP.

The Two-Action MDP

Comparing to the LP standard form,

$$
\begin{gathered}
A=\left[I-\theta P^{1}, I-\theta P^{2}\right] \in \mathbf{R}^{n \times 2 n} \\
\mathbf{b}=\mathbf{e} \in \mathbf{R}^{n}, \quad \text { and } \quad \mathbf{c}=\left(\mathbf{c}^{1} ; \mathbf{c}^{2}\right) \in \mathbf{R}^{2 n} .
\end{gathered}
$$

Any feasible basis

$$
A_{B}=I-\theta P
$$

$$
\left(A_{B}\right)^{-1}=(I-\theta P)^{-1}=I+\theta P+\theta^{2} P^{2}+\ldots
$$

MDP Properties

- Both the primal and dual MDPs have interior feasible points if $0 \leq \theta<1$.
- The feasible set of the primal MDP is bounded. More precisely,

$$
\mathbf{e}^{T} \mathbf{x}=\frac{n}{1-\theta}
$$

where $\mathrm{x}=\left(\mathrm{x}^{1} ; \mathrm{x}^{2}\right)$.

- Let $\hat{\mathbf{x}}$ be a basic feasible solution of the MDP. Then, any basic variable, say $\hat{\mathbf{x}}_{i}$, has its value

$$
\hat{\mathbf{x}}_{i} \geq 1
$$

- Let B^{*} and N^{*} be the optimal partition for the MDP. Then, B^{*} contains at least one feasible basis, i.e., $\left|B^{*}\right| \geq n$ and $\left|N^{*}\right| \leq n$; and for any $j \in B^{*}$
there is an optimal solution x^{*} such that

$$
\mathbf{x}_{j}^{*} \geq 1
$$

- Let A_{B} be any feasible basis and A_{N} be any submatrix of the rest columns of the MDP constraint matrix, then

$$
\left\|\left(A_{B}\right)^{-1} A_{N}\right\| \leq \frac{2 n \sqrt{n}}{1-\theta}
$$

The partition of LP variables

- If $L P(A, \mathbf{b}, \mathbf{c})$ has an optimal solution pair, then there exists a unique index set $B^{*} \subset\{1, \ldots, n\}$ and $N^{*}=\{1, \ldots, n\} \backslash B^{*}$, such that the optimal faces are

$$
\begin{gathered}
A_{B^{*}} \mathbf{x}_{B^{*}}=\mathbf{b}, \quad \mathbf{x}_{B^{*}} \geq \mathbf{0}, \quad \mathbf{x}_{N^{*}}=\mathbf{0} \\
\mathbf{s}_{B^{*}}=\mathbf{c}_{B^{*}}-A_{B^{*}}^{T} \mathbf{y}=\mathbf{0}, \quad \mathbf{s}_{N^{*}}=\mathbf{c}_{N^{*}}-A_{N^{*}}^{T} \mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

- This partition is called the strict complementarity partition:

$$
\begin{gathered}
A_{B^{*}} \mathbf{x}_{B^{*}}=\mathbf{b}, \quad \mathbf{x}_{B^{*}}>\mathbf{0}, \quad \mathbf{x}_{N^{*}}=\mathbf{0} \\
\mathbf{s}_{B^{*}}=\mathbf{c}_{B^{*}}-A_{B^{*}}^{T} \mathbf{y}=\mathbf{0}, \quad \mathbf{s}_{N^{*}}=\mathbf{c}_{N^{*}}-A_{N^{*}}^{T} \mathbf{y}>\mathbf{0}
\end{gathered}
$$

The Central Path of LP

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{T} \mathbf{y}+\mathbf{s} & =\mathbf{c} \\
S X \mathbf{e} & =\mu \mathbf{e} \\
\mathbf{x}>\mathbf{0}, & \mathbf{s}>\mathbf{0}
\end{aligned}
$$

The solution to these equations, written $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$, is called the central path point for μ, and the aggregate of all points, as μ ranges from 0 to ∞, is the central path of the LP problem.

The following is a geometric property of the central path:
Lemma 1 Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ and $\left(\mathbf{x}\left(\mu^{\prime}\right), \mathbf{y}\left(\mu^{\prime}\right), \mathbf{s}\left(\mu^{\prime}\right)\right)$ be two central path points such that $0 \leq \mu^{\prime}<\mu$. Then for any i,

$$
s\left(\mu^{\prime}\right)_{i} \leq n s(\mu)_{i} \quad \text { and } \quad x\left(\mu^{\prime}\right)_{i} \leq n x(\mu)_{i}
$$

In particular, if $\left(\mathbf{x}^{*}, \mathbf{y}^{*}, \mathbf{s}^{*}\right)$ is optimal, then, for any $\mu>0$ and any i,

$$
\mathbf{s}_{i}^{*} \leq n \mathbf{s}(\mu)_{i} \quad \text { and } \quad \mathbf{x}_{i}^{*} \leq n \mathbf{x}(\mu)_{i}
$$

Figure 1: Individual variables on the central path

Corollary 1 For any $\mu \in\left(0, \mu^{0}\right]$, the central path pair of the MDP satisfies

$$
\mathbf{x}(\mu)_{j} \leq \frac{n}{1-\theta} \quad \text { and } \quad \mathbf{s}(\mu)_{j} \geq \frac{1-\theta}{n} \mu \quad \text { for every } j=1, \ldots, 2 n
$$

and

$$
\mathbf{x}(\mu)_{j} \geq \frac{1}{2 n} \quad \text { and } \quad \mathbf{s}(\mu)_{j} \leq 2 n \mu \quad \text { for evey } j \in B^{*}
$$

$$
\begin{aligned}
& \text { Primal initial interior point } \\
& \left(\mathbf{x}^{i}\right)^{0}=\left(I-\theta P^{i}\right)^{-1} e, \quad i=1,2
\end{aligned}
$$

and

$$
\mathbf{x}^{0}=\binom{\frac{1}{2}\left(\mathbf{x}^{1}\right)^{0}}{\frac{1}{2}\left(\mathbf{x}^{2}\right)^{0}}
$$

Thus, \mathbf{x}^{0} is an interior feasible point for the MDP and

$$
\mathbf{x}^{0} \geq \frac{1}{2} \mathbf{e} \in \mathbf{R}^{2 n}
$$

Dual initial interior point

$$
\mathbf{y}^{0}=-\gamma \mathbf{e} \quad \text { and } \quad \mathbf{s}^{0}=\binom{\left(\mathbf{s}^{1}\right)^{0}}{\left(\mathbf{s}^{2}\right)^{0}}=\binom{\mathbf{c}^{1}+\gamma(1-\theta) \mathbf{e}}{\mathbf{c}^{2}+\gamma(1-\theta) \mathbf{e} .}
$$

where γ is chosen sufficiently large such that

$$
\mathbf{s}^{0}>0 \quad \text { and } \quad \gamma \geq \frac{\mathbf{c}^{T} \mathbf{x}^{0}}{n}
$$

Potential of the initial point pair

Denote $\mu^{0}=\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} / 2 n$ and consider the TTY potential function

$$
\begin{gathered}
\phi(\mathbf{x}, \mathbf{s})=2 n \log \left(\mathbf{s}^{T} \mathbf{x}\right)-\sum_{j=1}^{2 n} \log \left(\mathbf{s}_{j} \mathbf{x}_{j}\right) \geq 2 n \log (2 n) \\
\phi\left(\mathbf{x}^{0}, \mathbf{s}^{0}\right)=2 n \log \left(\mathbf{c}^{T} \mathbf{x}^{0}+\gamma(1-\theta) \frac{n}{1-\theta}\right)-\sum_{j=1}^{2 n} \log \left(\mathbf{s}_{j}^{0} \mathbf{x}_{j}^{0}\right) \\
\leq 2 n \log \left(\mathbf{c}^{T} \mathbf{x}^{0}+\gamma \cdot n\right)-\sum_{j=1}^{2 n} \log \left(\mathbf{s}_{j}^{0} / 2\right) \quad\left(\operatorname{since} \mathbf{x}_{j}^{0} \geq 1 / 2\right) \\
=2 n \log (2 n)-\sum_{j=1}^{2 n} \log \frac{2 n\left(\mathbf{c}_{j} / 2+\gamma(1-\theta) / 2\right)}{\mathbf{c}^{T} \mathbf{x}^{0}+\gamma \cdot n}
\end{gathered}
$$

$$
\begin{aligned}
& \leq 2 n \log (2 n)-\sum_{j=1}^{2 n} \log \frac{n \gamma(1-\theta)}{\mathbf{c}^{T} \mathbf{x}^{0}+\gamma \cdot n} \\
& \leq 2 n \log (2 n)-\sum_{j=1}^{2 n} \log \frac{n \gamma(1-\theta)}{2 \gamma \cdot n} \\
& =2 n \log (2 n)+2 n \log \left(\frac{2}{1-\theta}\right)
\end{aligned}
$$

Approximately centered pair

"Approximately centered" point ($\mathbf{x}, \mathbf{y}, \mathbf{s}, \mu$) such that

$$
\eta(\mathbf{x}, \mathbf{y}, \mathbf{s}, \mu):=\|S X \mathbf{e} / \mu-\mathbf{e}\| \leq \eta_{0}
$$

where, say, $\eta_{0}=0.2$ throughout this talk.

Complexity to compute an initial central-path point

Therefore, using the primal-dual potential reduction algorithm, we can generate an (approximate) central path point $\left(\mathrm{x}^{0}, \mathbf{y}^{0}, \mathrm{~s}^{0}\right)$ such that

$$
\eta\left(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}, \mu^{0}\right) \leq \eta_{0}
$$

in at most $O\left(n\left(\log \frac{2}{1-\theta}\right)\right)$ interior-point algorithm iterations where each iteration uses $O\left(n^{3}\right)$ arithmetic operations,

Combinatorial Algorithm: Separation of variables

$$
g=\frac{10 n^{2}\left(1+\eta_{0}\right)}{(1-\theta) \sqrt{1-\eta_{0}}} .
$$

For any given approximate central path point $(\mathbf{x}, \mathbf{y}, \mathbf{s})$ such that

$$
\eta(\mathbf{x}, \mathbf{y}, \mathbf{s}, \mu) \leq \eta_{0},
$$

define

$$
\begin{gathered}
J_{1}(\mu)=\left\{j: \mathbf{s}_{j} \leq \frac{8 n \mu}{3}\right\} \\
J_{3}(\mu)=\left\{j: \mathbf{s}_{j} \geq \frac{8 n \mu \cdot g}{3}\right\}
\end{gathered}
$$

and $J_{2}(\mu)$ be the rest of indices. Thus, for any $j_{1} \in J_{1}(\mu)$ and $j_{3} \in J_{3}(\mu)$, we have

$$
\frac{\mathbf{s}_{j_{1}}}{\mathbf{s}_{j_{3}}} \leq \frac{1}{g}
$$

For any $j \in B^{*}$, we observe

$$
\mathbf{s}_{j}=\frac{\mathbf{s}_{j}}{\mathbf{s}(\mu)_{j}} \mathbf{s}(\mu)_{j} \leq \frac{\mathbf{s}_{j}}{\mathbf{s}(\mu)_{j}} 2 n \mu \leq \frac{4}{3} 2 n \mu=\frac{8 n \mu}{3} .
$$

Therefore,
Lemma 2 Let $J_{1}(\mu)$ be defined above at any $0<\mu \leq \mu^{0}$. Then, every variable of B^{*} is in $J_{1}(\mu)$ or $B^{*} \subset J_{1}(\mu)$ for any $0<\mu \leq \mu^{0}$, and, thereby, $J_{1}(\mu)$ always contains an optimal basis.

Combinatorial Algorithm: Elimination of variables

If $J_{3}(\mu)$ is not empty, we can now eliminate all its primal variables and dual constraints from further consideration, since they must be all in N^{*} and take zero value at any optimal solution.

To restore the primal feasibility after elimination, we solve the least squares problem:

$$
\min _{\delta \mathbf{x}_{1}}\left\|D_{1}^{1 / 2} \delta \mathbf{x}_{1}\right\| \text { subject to } \quad A_{1} \delta \mathbf{x}_{1}=A_{3} \mathbf{x}_{3}
$$

Then, we have

$$
A_{1}\left(\mathbf{x}_{1}+\delta \mathbf{x}_{1}\right)+A_{2} \mathbf{x}_{2}=A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+A_{3} \mathbf{x}_{3}=\mathbf{b}
$$

Combinatorial Algorithm: Restoration of the central path

Lemma 3 Not only $A_{1}\left(\mathbf{x}_{1}+\delta \mathbf{x}_{1}\right)+A_{2} \mathbf{x}_{2}=\mathbf{b}$ and $\left(\mathbf{x}_{1}+\delta \mathbf{x}_{1} ; \mathbf{x}_{2}\right)>0$, but also

$$
\eta\left(\left(\mathbf{x}_{1}+\delta \mathbf{x}_{1} ; \mathbf{x}_{2}\right), \mathbf{y},\left(\mathbf{s}_{1} ; \mathbf{s}_{2}\right), \mu\right) \leq 2 \eta_{0} .
$$

That is, they are a near central-path point pair for the same μ of the MDP after eliminating every primal variables and dual constraints in $J_{3}(\mu)$.

How to Make $J_{3}(\mu) \neq \emptyset$

We apply a predictor-corrector method of Mizuno-Todd-Ye.

$$
\begin{equation*}
\epsilon^{0}:=\frac{1}{\sqrt{\mu^{0}}}\left\|D^{-1 / 2}(\delta \overline{\mathbf{s}}+\mathbf{s})\right\|=\frac{1}{\sqrt{\mu^{0}}}\left\|D^{1 / 2} \delta \overline{\mathbf{x}}\right\| \tag{2}
\end{equation*}
$$

is strictly greater than 0 . Let

$$
\begin{equation*}
\bar{\alpha}=\max \left\{0,1-\frac{\sqrt{n} \epsilon^{0}}{\eta_{0}}\right\} . \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \overline{\mathbf{x}}=\mathbf{x}+\bar{\alpha} \delta \overline{\mathbf{x}}, \\
& \overline{\mathbf{y}}=\mathbf{y}+\bar{\alpha} \delta \overline{\mathbf{y}},
\end{aligned}
$$

and

$$
\overline{\mathbf{s}}=\mathbf{s}+\bar{\alpha} \delta \overline{\mathbf{s}} .
$$

If $\bar{\alpha}<1$, we have the new iterate $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}})$ nearly centered and strictly feasible.

Lemma 4 If $\epsilon^{0}>0$, then there must be a variable indexed \bar{j} such that $\bar{j} \in N^{*}$, and the central-path value

$$
\mathbf{s}(\mu)_{\bar{j}} \geq \frac{\sqrt{1-\eta_{0}}(1-\theta) \mu^{0}}{2 \sqrt{2} n^{2.5}} \cdot \epsilon^{0}
$$

for all $\mu \in\left(0, \mu^{0}\right]$.
Now consider two cases:

$$
\begin{equation*}
\frac{\sqrt{n} \epsilon^{0}}{\eta_{0}} \geq 1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sqrt{n} \epsilon^{0}}{\eta_{0}}<1 \tag{5}
\end{equation*}
$$

Complexity: Case 1

$\bar{\alpha}=0$, and

$$
\epsilon^{0} \geq \frac{\eta_{0}}{\sqrt{n}} \quad \text { and } \quad \mathbf{s}(\mu)_{\bar{j}} \geq \frac{\eta_{0} \sqrt{1-\eta_{0}}(1-\theta) \mu^{0}}{2 \sqrt{2} n^{3}}
$$

where index $\bar{j} \in N^{*}$ is the one singled out in Lemma 4. In this case, we continue apply the predictor-corrector path-following algorithm reducing μ from μ^{0}. Thus, as soon as

$$
\frac{\mu}{\mu^{0}} \leq \frac{\eta_{0} \sqrt{1-\eta_{0}}(1-\theta)}{8 \sqrt{2} n^{4} g}
$$

we have

$$
\mathbf{s}(\mu)_{\bar{j}} \geq \frac{\eta_{0} \sqrt{1-\eta_{0}}(1-\theta) \mu^{0}}{2 \sqrt{2} n^{3}} \geq 4 n \mu \cdot g .
$$

That is, $\bar{j} \in J_{3}(\mu)$.

Complexity: Case 2

$$
1-\bar{\alpha}=\frac{\sqrt{n} \epsilon^{0}}{\eta_{0}} \quad \text { and } \quad \mathbf{s}(\mu)_{\bar{j}} \geq \frac{\eta_{0} \sqrt{1-\eta_{0}}(1-\theta)(1-\bar{\alpha}) \mu^{0}}{2 \sqrt{2} n^{3}}
$$

where again index \bar{j} is the one singled out in Lemma 4. Note that the first predictor step has reduced μ^{0} to $(1-\bar{\alpha}) \mu^{0}$. Then, we continue apply the predictor-corrector algorithm reducing μ from $(1-\bar{\alpha}) \mu^{0}$. As soon as

$$
\frac{\mu}{(1-\bar{\alpha}) \mu^{0}} \leq \frac{\eta_{0} \sqrt{1-\eta_{0}}(1-\theta)}{8 \sqrt{2} n^{4} g}
$$

we have again

$$
\mathbf{s}(\mu)_{\bar{j}} \geq 4 n \mu \cdot g
$$

That is, $\bar{j} \in J_{3}(\mu)$.

Complexity to Make $J_{3}(\mu) \neq \emptyset$

In at most $O\left(n^{0.5}\left(\log \frac{1}{1-\theta}+\log n\right)\right)$ predictor-corrector interior-point algorithm iterations, we have $J_{3}(\mu) \neq \emptyset$.

Figure 2: Markov Decision Problem

Complexity Theorem

Theorem 1 The combinatorial interior-point algorithm generates an optimal solution of the MDP in at most n major eliminating steps, and each step uses $O\left(n^{0.5}\left(\log \frac{1}{1-\theta}+\log n\right)\right)$ predictor-corrector interior-point algorithm iterations.

Using the Karmakar rank-one updating scheme, the average number of arithmetic operations of each predictor-corrector interior-point iteration is $O\left(n^{2.5}\right)$. Thus,

Theorem 2 The combinatorial interior-point algorithm generates an optimal solution of the MDP in at most $O\left(n^{4}\left(\log \frac{1}{1-\theta}+\log n\right)\right)$ arithmetic operations.

Extensions to general MDP

Corollary 2 The combinatorial interior-point algorithm generates an optimal solution of the MDP in at most $(k-1) n$ major eliminating steps, and each step uses $O\left((n k)^{0.5}\left(\log \frac{1}{1-\theta}+\log n+\log k\right)\right)$ predictor-corrector interior-point algorithm iterations, where n is the number of states and k is the number of actions for each state. The total arithmetic operations to solve the MDP is bounded by $O\left(n^{4} k^{2}\left(\log \frac{1}{1-\theta}+\log n+\log k\right)\right)$.

What's next

- Get rid of θ ?
- Does θ have to play a role in the complexity of the MDP?

