
The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 1

A Strongly Polynomial-Time Algorithm for Solving the Markov
Decision Problem with Fixed Discount Factor

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

Thanks to Kahn Mason, Ben Van Roy and Pete Veinott for many insightful

discussions on this subject.



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 2

Outline

• Linear programming, complexity, the Markov decision problem;

• Central path and its geometry;

• Combinatorial interior-point algorithm for the MDP;

• Complexity analysis of the algorithm;
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Complexity Theory

• a notion of input size,

• a set of basic operations, and

• a cost for each basic operation.

The last two allow one to define the cost of a computation.

The Blum-Shub-Smale model is what we use in this talk, with exact real arithmetic

operations (i.e., ignoring round-off errors).
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Linear Programming

•
Primal: minimize cT x

subject to Ax = b,

x ≥ 0,

•
Dual: maximize bT y

subject to s = c−AT y ≥ 0,

• A ∈ Rm×n, c ∈ Rn and b ∈ Rm are given; x ∈ Rn and

(y ∈ Rm, s ∈ Rn) are unknown vectors; s is often called dual slack vector.

• We denote the LP problem as LP (A,b, c).
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• The LP problem is polynomial solvable under the Turing model of

computation, proved by Khachiyan and also by Karmarkar and many others.

But the problem, whether there is a polynomial-time algorithm for LP under

the BSS model of computation, remains open.

• There are some research developments relating complexity of interior-point

algorithms with certain “condition or difficulty” measures for linear

programming (see Renegar/Peña, Epelman/Freund/Vera, Ho/Tüncel,

Todd/Tüncel/Ye, Cucker/Cheung/Cucker, Gonzaga/Hugo, Ye, etc).

• The “layered-step interior point” (LIP) algorithm (Vavasis/Ye,

Megiddo/Mizuno/Tsuchiya, Ho/Tüncel, Monteiro/Tsuchiya, etc) interleaves

small steps with longer layered least-squares (LLS) steps to follow the central

path. The algorithm terminates in O(n3.5c(A)) iterations.

c(A) = O(log(χ̄A) + log n). (1)



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 6

The Markov Decision Problem

minimize (c1)T x1 . + (ci)T xi + . +(ck)T xk

subject to (I − θP 1)x1 . + (I − θP i)xi + . +(I − θP k)xk = e,

x1 . xi . xk ≥ 0.

Here, xi ∈ Rn represents the decision variables of all states for action i, I is

the n× n identity matrix, and P i, i = 1, . . . , k, is an n× n Markov matrix

(eP i = e and P i ≥ 0).

A = [I − θP 1, . . . , I − θP k] ∈ Rn×nk

b = e ∈ Rn, and c = (c1; . . . ; ck) ∈ Rnk.
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The Dual of MDP

And its dual (by adding slack variables) is

maximize eT y

subject to (I − θP 1)T y + s1 = c1,

. . . . . . . . .

(I − θP i)T y + si = ci,

. . . . . . . . .

(I − θP k)T y + sk = ck,

s1, . . . , si, . . . , sk ≥ 0.

Discount factor: θ < 1.

For simplicity, consider k = 2 throughout this talk.
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Complexity Results on MDP

Value-Iter. Policy-Iter. LP-Alg. Combinatorial IPA

n2 · L(P i,ci,θ)
1−θ n3 · 2n

n n2.5 · n0.5L(P i, ci, θ)
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New Result on MDP

Value-Iter. Policy-Iter. LP-Alg. Combinatorial IPA

n2 · L(P i,ci,θ)
1−θ n3 · 2n

n n2.5 · n0.5L(P i, ci, θ) n1.5 · n2.5 ln 1
1−θ
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Termination: Why L(·)?

All polynomial algorithms are continuous algorithms and it denotes how small the

error should be in order to round an exact optimal solution (policy)?

cT x− z∗ ≤ 2−L(A,b,c)

or

cT x− bT y ≤ 2−L(A,b,c)

This talk presents a combinatorial interior-point algorithm for MDP.
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We remark that the condition measure χ̄A mentioned earlier cannot be bounded

by 1/(1− θ):

A =


 1− θ 0 1− θ(1− ε) 0

0 1− θ −θ · ε 1− θ




Here, for any given θ > 0, ‖(AB)−1A‖ can be arbitrarily large as ε → 0+

when

AB =


 1− θ 1− θ(1− ε)

0 −θ · ε


 .

In fact, all other condition measures used in complexity analyses for general LP

can be arbitrarily bad for the MDP.
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The Two-Action MDP

Comparing to the LP standard form,

A = [I − θP 1, I − θP 2] ∈ Rn×2n,

b = e ∈ Rn, and c = (c1; c2) ∈ R2n.

Any feasible basis

AB = I − θP

(AB)−1 = (I − θP )−1 = I + θP + θ2P 2 + . . . .
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MDP Properties

• Both the primal and dual MDPs have interior feasible points if 0 ≤ θ < 1.

• The feasible set of the primal MDP is bounded. More precisely,

eT x =
n

1− θ
,

where x = (x1;x2).

• Let x̂ be a basic feasible solution of the MDP. Then, any basic variable, say

x̂i, has its value

x̂i ≥ 1.

• Let B∗ and N∗ be the optimal partition for the MDP. Then, B∗ contains at

least one feasible basis, i.e., |B∗| ≥ n and |N∗| ≤ n; and for any j ∈ B∗
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there is an optimal solution x∗ such that

x∗j ≥ 1.

• Let AB be any feasible basis and AN be any submatrix of the rest columns

of the MDP constraint matrix, then

‖(AB)−1AN‖ ≤ 2n
√

n

1− θ
.
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The partition of LP variables

• If LP (A,b, c) has an optimal solution pair, then there exists a unique index

set B∗ ⊂ {1, ..., n} and N∗ = {1, ..., n} \B∗, such that the optimal

faces are

AB∗xB∗ = b, xB∗ ≥ 0, xN∗ = 0

sB∗ = cB∗ −AT
B∗y = 0, sN∗ = cN∗ −AT

N∗y ≥ 0.

• This partition is called the strict complementarity partition:

AB∗xB∗ = b, xB∗ > 0, xN∗ = 0

sB∗ = cB∗ −AT
B∗y = 0, sN∗ = cN∗ −AT

N∗y > 0.
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The Central Path of LP

Ax = b,

AT y + s = c,

SXe = µe,

x > 0, s > 0.

The solution to these equations, written (x(µ),y(µ), s(µ)), is called the central

path point for µ, and the aggregate of all points, as µ ranges from 0 to∞, is the

central path of the LP problem.
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The following is a geometric property of the central path:

Lemma 1 Let (x(µ),y(µ), s(µ)) and (x(µ′),y(µ′), s(µ′)) be two central

path points such that 0 ≤ µ′ < µ. Then for any i,

s(µ′)i ≤ ns(µ)i and x(µ′)i ≤ nx(µ)i.

In particular, if (x∗,y∗, s∗) is optimal, then, for any µ > 0 and any i,

s∗i ≤ ns(µ)i and x∗i ≤ nx(µ)i.
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Figure 1: Individual variables on the central path
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Corollary 1 For any µ ∈ (0, µ0], the central path pair of the MDP satisfies

x(µ)j ≤ n

1− θ
and s(µ)j ≥ 1− θ

n
µ for every j = 1, . . . , 2n;

and

x(µ)j ≥ 1
2n

and s(µ)j ≤ 2nµ for evey j ∈ B∗.
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Primal initial interior point

(xi)0 = (I − θP i)−1e, i = 1, 2

and

x0 =




1
2 (x1)0

1
2 (x2)0


 .

Thus, x0 is an interior feasible point for the MDP and

x0 ≥ 1
2
e ∈ R2n.



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 21

Dual initial interior point

y0 = −γe and s0 =


 (s1)0

(s2)0


 =


 c1 + γ(1− θ)e

c2 + γ(1− θ)e.




where γ is chosen sufficiently large such that

s0 > 0 and γ ≥ cT x0

n
.
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Potential of the initial point pair

Denote µ0 = (x0)T s0/2n and consider the TTY potential function

φ(x, s) = 2n log(sT x)−
2n∑

j=1

log(sjxj) ≥ 2n log(2n).

φ(x0, s0) = 2n log(cT x0 + γ(1− θ)
n

1− θ
)−

2n∑

j=1

log(s0
jx

0
j )

≤ 2n log(cT x0 + γ · n)−
2n∑

j=1

log(s0
j/2) (since x0

j ≥ 1/2)

= 2n log(2n)−
2n∑

j=1

log
2n(cj/2 + γ(1− θ)/2)

cT x0 + γ · n
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≤ 2n log(2n)−
2n∑

j=1

log
nγ(1− θ)

cT x0 + γ · n

≤ 2n log(2n)−
2n∑

j=1

log
nγ(1− θ)

2γ · n

= 2n log(2n) + 2n log(
2

1− θ
).
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Approximately centered pair

“Approximately centered” point (x,y, s, µ) such that

η(x,y, s, µ) := ‖SXe/µ− e‖ ≤ η0,

where, say, η0 = 0.2 throughout this talk.
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Complexity to compute an initial central-path point

Therefore, using the primal-dual potential reduction algorithm, we can generate

an (approximate) central path point (x0,y0, s0) such that

η(x0,y0, s0, µ0) ≤ η0.

in at most O(n(log 2
1−θ )) interior-point algorithm iterations where each iteration

uses O(n3) arithmetic operations,
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Combinatorial Algorithm: Separation of variables

g =
10n2(1 + η0)

(1− θ)
√

1− η0
.

For any given approximate central path point (x,y, s) such that

η(x,y, s, µ) ≤ η0,

define

J1(µ) = {j : sj ≤ 8nµ

3
},

J3(µ) = {j : sj ≥ 8nµ · g
3

}
and J2(µ) be the rest of indices. Thus, for any j1 ∈ J1(µ) and j3 ∈ J3(µ), we

have
sj1

sj3

≤ 1
g
.
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For any j ∈ B∗, we observe

sj =
sj

s(µ)j
s(µ)j ≤ sj

s(µ)j
2nµ ≤ 4

3
2nµ =

8nµ

3
.

Therefore,

Lemma 2 Let J1(µ) be defined above at any 0 < µ ≤ µ0. Then, every variable

of B∗ is in J1(µ) or B∗ ⊂ J1(µ) for any 0 < µ ≤ µ0, and, thereby, J1(µ)
always contains an optimal basis.
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Combinatorial Algorithm: Elimination of variables

If J3(µ) is not empty, we can now eliminate all its primal variables and dual

constraints from further consideration, since they must be all in N∗ and take zero

value at any optimal solution.

To restore the primal feasibility after elimination, we solve the least squares

problem:

min
δx1

‖D1/2
1 δx1‖ subject to A1δx1 = A3x3.

Then, we have

A1(x1 + δx1) + A2x2 = A1x1 + A2x2 + A3x3 = b.
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Combinatorial Algorithm: Restoration of the central path

Lemma 3 Not only A1(x1 + δx1) + A2x2 = b and (x1 + δx1;x2) > 0, but

also

η((x1 + δx1;x2),y, (s1; s2), µ) ≤ 2η0.

That is, they are a near central-path point pair for the same µ of the MDP after

eliminating every primal variables and dual constraints in J3(µ).
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How to Make J3(µ) 6= ∅

We apply a predictor-corrector method of Mizuno-Todd-Ye.

ε0 :=
1√
µ0
‖D−1/2(δs̄ + s)‖ =

1√
µ0
‖D1/2δx̄‖ (2)

is strictly greater than 0. Let

ᾱ = max
{

0, 1−
√

nε0

η0

}
. (3)

x̄ = x + ᾱδx̄,

ȳ = y + ᾱδȳ,
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and

s̄ = s + ᾱδs̄.

If ᾱ < 1, we have the new iterate (x̄, ȳ, s̄) nearly centered and strictly feasible.
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Lemma 4 If ε0 > 0, then there must be a variable indexed j̄ such that j̄ ∈ N∗,

and the central-path value

s(µ)j̄ ≥
√

1− η0(1− θ)µ0

2
√

2n2.5
· ε0,

for all µ ∈ (0, µ0].

Now consider two cases: √
nε0

η0
≥ 1. (4)

and √
nε0

η0
< 1. (5)
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Complexity: Case 1

ᾱ = 0, and

ε0 ≥ η0√
n

and s(µ)j̄ ≥
η0

√
1− η0(1− θ)µ0

2
√

2n3
,

where index j̄ ∈ N∗ is the one singled out in Lemma 4. In this case, we

continue apply the predictor-corrector path-following algorithm reducing µ from

µ0. Thus, as soon as

µ

µ0
≤ η0

√
1− η0(1− θ)
8
√

2n4g
,

we have

s(µ)j̄ ≥
η0

√
1− η0(1− θ)µ0

2
√

2n3
≥ 4nµ · g.

That is, j̄ ∈ J3(µ).



The Lunteren Conference, Jan. 19, 2005 The MDP Complexity 34

Complexity: Case 2

1− ᾱ =
√

nε0

η0
and s(µ)j̄ ≥

η0

√
1− η0(1− θ)(1− ᾱ)µ0

2
√

2n3

where again index j̄ is the one singled out in Lemma 4. Note that the first

predictor step has reduced µ0 to (1− ᾱ)µ0. Then, we continue apply the

predictor-corrector algorithm reducing µ from (1− ᾱ)µ0. As soon as

µ

(1− ᾱ)µ0
≤ η0

√
1− η0(1− θ)
8
√

2n4g
,

we have again

s(µ)j̄ ≥ 4nµ · g.

That is, j̄ ∈ J3(µ).
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Complexity to Make J3(µ) 6= ∅

In at most O(n0.5(log 1
1−θ + log n)) predictor-corrector interior-point algorithm

iterations, we have J3(µ) 6= ∅.
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Figure 2: Markov Decision Problem
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Complexity Theorem

Theorem 1 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most n major eliminating steps, and each step uses

O(n0.5(log 1
1−θ + log n)) predictor-corrector interior-point algorithm iterations.

Using the Karmakar rank-one updating scheme, the average number of arithmetic

operations of each predictor-corrector interior-point iteration is O(n2.5). Thus,

Theorem 2 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most O(n4(log 1
1−θ + log n)) arithmetic operations.
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Extensions to general MDP

Corollary 2 The combinatorial interior-point algorithm generates an optimal

solution of the MDP in at most (k − 1)n major eliminating steps, and each step

uses O((nk)0.5(log 1
1−θ + log n + log k)) predictor-corrector interior-point

algorithm iterations, where n is the number of states and k is the number of

actions for each state. The total arithmetic operations to solve the MDP is

bounded by O(n4k2(log 1
1−θ + log n + log k)).
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What’s next

• Get rid of θ?

• Does θ have to play a role in the complexity of the MDP?


