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Outline

• Ad Hoc Wireless Sensor Network Localization: SDP models and analyses

• SDP Computation: decomposition and distribution

• SDP Rounding: improving SDP solution

• More applications
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Ad Hoc Wireless Sensor Network Localization

• Input m known points (anchors) ak ∈ R2, k = 1, ..., m, and n unknown

points (sensors or targets) xj ∈ R2, j = 1, ..., n. For some pair of two

points, we have a Euclidean distance measure d̂kj between ak and xj , or

distance measure d̂ij between xi and xj .

• Output Position estimation for all unknown points, and confidence measures

on reliability of each position estimation.

• Objective Robust, fast and accurate.
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Figure 1: 50-Sensor Network with Radio Range .3
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Related Work

• FCC requires wireless carriers to provide far more precise location

information, within 50 to 100 meters in most cases, of a wireless 911 caller by

December 31, 2005.

• A great deal of research has been done on the topic of position estimation in

ad-hoc networks, see Hightower and Boriello (2001) and Ganesan et al.

(2002); Beacon grid: e.g., Bulusu and Heidemann (2000) and Howard et al.

(2001); Distance measurement: e.g., Doherty et al. (2001), Niculescu and

Nath (2001), Savarese et al. (2002), Savvides et al. (2001, 2002), Shang et

al. (2003), Eren et al. (2004).

• Metric embeddings and Distance geometry problems: Johnson and

Lindenstrauss (1984), Bourgain (1985), Barvinok (1995), Moré and Wu

(1997), Alfakih et al. (1999), Laurent (2001), etc.
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Euclidean Distance Geometry Model

‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na,

‖xi − xj‖2 ≥ R2
ij , ∀(i, j) 6∈ Nx, i < j,

‖ak − xj‖2 ≥ R2
kj , ∀(k, j) 6∈ Na.

d2
ij (d2

kj ) connects xi to xj (ak to xj ) with an edge whose length is dij (dkj ).

Does the system has a localization or realization of all xj ’s? Is the localization

unique? Is the localization reliable or trustworthy? Is the system partially

localizable?
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Euclidean Distance Geometry Model

Consider a simpler Euclidean Distance Geometry Model:

‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na.
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Convex Optimization Method

‖xi − xj‖2 ≤ d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 ≤ d2
kj , ∀ (k, j) ∈ Na.

Doherty et al. (2001)
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Global and Nonlinear Least Squares Method

min
∑

i,j∈Nx
(‖xi − xj‖2 − d2

ij)
2 +

∑
k,j∈Na

(‖ak − xj‖2 − d2
kj)

2

min
∑

i,j∈Nx
(‖xi − xj‖ − dij)2 +

∑
k,j∈Na

(‖ak − xj‖ − dkj)2
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Matrix Representation

Let X = [x1 x2 ... xn] be the 2× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.

eT
ijY eij = d2

ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)T


 I X

XT Y


 (ak; ej) = d2

kj , ∀ k, j ∈ Na,

Y = XT X.

where Y denotes the Gram matrix XT X .
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Semidefinite Programming (SDP)

(SDP ) min C • Z

subject to Ai • Z = bi, i = 1, 2, ...,m, Z º 0,

where C, Ai ∈Mn, the set of n-dimension symmetric matrices.

The dual problem to (SDP) can be written as:

(SDD) max bT y

subject to
∑m

i yiAi + S = C, S º 0,

where b = (b1; ...; bm) ∈ Rm, variables y ∈ Rm and S ∈Mn.

An generalization of linear programming.
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SDP Relaxation

Change

Y = XT X

to

Y º XT X.

This matrix inequality is equivalent to (e.g., Boyd et al. 1994)

 I X

XT Y


 º 0.
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SDP standard form

Z =


 I X

XT Y


 .

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; eij)(0; eij)T • Z = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)(ak; ej)T • Z = d2
kj , ∀ k, j ∈ Na,

Z º 0.

Any matrix solution for the SDP relaxation has rank at least 2. If every sensor

point is connected, directly or indirectly, to an anchor point, then the solution set

must be bounded.
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The dual of the SDP relaxation

minimize I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

wkjd
2
kj

subject to


 V 0

0 0


 +

∑
i<j∈Nx

wij(0; eij)(0; eij)T

+
∑

k,j∈Na
wkj(ak; ej)(ak; ej)T º 0,

where variable matrix V ∈M2, varaible wij is the weight on edge from xi to

xj , and wkj is the weight on edge from ak to xj .

Note that the dual is always feasible since V = 0 and all w· equal 0 is a feasible

solution.
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Localizable problem

A sensor network is localizable if there is a unique localization in R2 and there is

no xj ∈ Rh, j = 1, ..., n, where h > 2, such that

‖xi − xj‖2 = d2
ij , ∀ i, j ∈ Nx, i < j,

‖(ak;0)− xj‖2 = d2
kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space

where anchor points are augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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When is the problem localizable?

Theorem 1. The following statements are equivalent:

1. The sensor network is localizable;

2. The max-rank solution of the SDP relaxaion has rank 2;

3. The solution matrix has Y = XT X or Trace(Y −XT X) = 0 .

If a localizable problem has nondegenerate solution, then the problem is strongly

localizable.
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Figure 2: One sensor-Two anchors: Not localizable
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Figure 3: Two sensor-Three anchors: Strongly Localizable
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Figure 4: Two sensor-Three anchors: Localizable but not Strongly
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Figure 5: Two sensor-Three anchors: Not localizable
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Figure 6: Two sensor-Three anchors: Stronly Localizable
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Localize All Localizable Points

Theorem 2. If a problem (graph) contains a subproblem (subgraph) that is

localizable, then the submatrix solution corresponding to the subproblem in the

SDP solution has rank 2. That is, the SDP relaxation computes a solution that

localize all possibly localizable unknown sensor points.

Implication: Trace,

Trace(Ȳ − X̄T X̄) =
n∑

j=1

(Ȳjj − ‖x̄j‖2)

Ȳjj − ‖x̄j‖2 can be used as a measure to see whether jth sensor’s estimated

position is reliable or not.
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Probabilistic Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as random points from the distance

measures containing random errors. Then the solution to the SDP problem

provides the first and second moment sample estimation (Bertsimas and Ye

1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate xT
i xj .

Consequently,

Ȳjj − ‖x̄j‖2,
which is the individual variance estimation of sensor j, gives an interval

estimation for its true position.
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SDP Relaxation of Least Squares

Find a symmetric matrix Z ∈ R(2+n)×(2+n) and αij and αkj such that

minimize
∑

(ij) α2
ij +

∑
(kj) α2

kj

subject to Z1:2,1:2 = I

(0; eij)(0; eij)T • Z + αij = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)(ak; ej)T • Z + αkj = d2
kj , ∀ k, j ∈ Na,

Z º 0.

The SDP objective value is a lower bound on the original least squares problem.
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Simulation and Experiment Results

SDP solvers used were SeDuMi (Sturm, 2001) and DSDP2.0 (Benson et al.

1998).

(SDP ) min C • Z

subject to Ai • Z = (≤,≥)bi, i = 1, 2, ..., m, Z º 0,

where Ai = aia
T
i .

In our computational experiments:

dij = truedij · (1 + randn(1) · nf)
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Rounding the SDP solution

• When measurement noises exist, the SDP solution almost always has a high

rank. How to round the high-rank solution into a low rank?

• Gradient-based local search: using the SDP relaxation solution as the initial

point, we apply the steepest descent method to further reducing the

estimation error:

∑

i,j∈Nx

(‖xi − xj‖2 − d2
ij)

2 +
∑

k,j∈Na

(‖ak − xj‖2 − d2
kj)

2

or ∑

i,j∈Nx

(‖xi − xj‖ − dij)2 +
∑

k,j∈Na

(‖ak − xj‖ − dkj)2

• A checkable bound of suboptimality can be used to ensure the solution quality.
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Figure 7: Gradient search trajectories: Two sensor-Three anchor Example
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Figure 8: SDP/Gradient search trajectories: 10% Noise Example
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Figure 9: The objective value reduction: 10% Noise Example
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Figure 10: No-SDP/Gradient search trajectories: 10% Noise Example
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Figure 11: SDP lower bound and suboptimal objective function value vs noisy factor
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A Distributed SDP Method

1. Partition the anchors into a number of clusters according to their geographical

positions. In our implementation, we partition the entire sensor area into a

number of equal-sized squares and those anchors in a same square form a

regional cluster.

2. Each (unpositioned) sensor sees if it has a direct connection to an anchor

(within the communication range to an anchor). If it does, it becomes an

unknown sensor point in the cluster to which the anchor belongs. Note that a

sensor may be assigned into multiple clusters and some sensors are not

assigned into any cluster.

3. For each cluster of anchors and unknown sensors, formulate the error

minimization problem for that cluster, and solve the resulting SDP model if the

number of anchors is more than 2. Typically, each cluster has less than 100
sensors and the model can be solved efficiently.
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4. After solving each SDP model, check the individual trace for each unknown

sensor in the model. If it is below a predetermined small tolerance, label the

sensor as positioned and its estimation x̄j becomes an “ anchor”. If a sensor

is assigned in multiple clusters, we choose the x̄j that has the smallest

individual trace. This is done so as to choose the best estimation of the

particular sensor from the estimations provided by solving the different

clusters.

5. Consider positioned sensors as anchors and return to Step 1 to start the next

round of estimation.
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Figure 12: SDP localization, 2, 000 sensors, radiorange=.05, noise=10%.
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Figure 13: Localization after 50 gradient search steps, 2, 000 sensors.
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More applications: Data dimensionality reduction

Given P , a data point set of p1, ..., pn ∈ Rd, a fundamental question is how to

embed P into Q of q1, ..., qn ∈ Rk, where k ¿ d, such that qjs keep all

essential information of P , such as the norms, distances and angles between

pjs.

In other words, find a d− k-dimension subspace such that the projections of pjs

onto the subspace has a minimal “information loss.”
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Euclidean ball packing

The Euclidean ball packing problem is an old mathematical geometry problem

with plenty modern applications.
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Molecular confirmation

3-D Localization.
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More research topics

• Are there necessary and sufficient conditions for all sensors being

localizable? More on rounding the SDP solution matrix into a lower rank

matrix?

• What is the best objective function in the SDP model such that the position

errors, resulted from the noise in distance measures, are minimal?

• Incorporate other information, angle etc., into the model?

• Design: how many anchors need to be used? Where to place them? What is

the best topology?


