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Abstract

We present a new complexity result on solving the Markov decision problem
(MDP) with n states and a number of actions for each state, a special class of real-
number linear programs with the Leontief matrix structure. We prove that, when
the discount factor θ is strictly less than 1, the problem can be solved in at most
O(n1.5(log 1

1−θ +log n)) classical interior-point method iterations and O(n4(log 1
1−θ +

log n)) arithmetic operations. Our method is a combinatorial interior-point method
related to the work of Ye [30] and Vavasis and Ye [26]. To our knowledge, this is
the first strongly polynomial-time algorithm for solving the MDP when the discount
factor is a constant less than 1.

1 Introduction

Complexity theory is arguably the foundational stone of computer algorithms. The goal
of the theory is twofold: to develop criteria for measuring the effectiveness of various
algorithms (and thus, to be able to compare algorithms using these criteria), and to asses
the inherent difficulty of various problems.

The term “complexity” refers to the amount of resources required by a computation.
We will focus on a particular resource namely, the computing time. In complexity theory,
however, one is not interested on the execution time of a program implemented in a par-
ticular programming language, running on a particular computer over a particular input.
There are too many contingent factors here. Instead, one would like to associate to an
algorithm some more intrinsic measures of its time requirements. Roughly speaking, to do
so one needs to fix:
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• a notion of input size,

• a set of basic operations, and

• a cost for each basic operation.

The last two allow one to define the cost of a computation.

The selection of a set of basic operations is generally easy. For the algorithms we will
consider in this paper, the obvious choice is the set {+,−,×, /,≤} of the four arithmetic
operations and the comparison. Selecting a notion of input size and a cost for the basic
operations is more delicate and depends on the kind of data dealt with by the algorithm.
Some kinds can be represented within a fixed amount of computer memory, some others
require a variable amount depending on the data at hand.

Examples of the first are fixed-precision floating-point numbers. Any such number is
stored in a fixed amount of memory (usually 32 or 64 bits). For this kind of data the size
of an element is usually taken to be 1 and consequently to have unit size. Examples of
the second are integer numbers which require a number of bits approximately equal to the
logarithm of their absolute value. This logarithm is usually referred to as the bit size of
the integer. These ideas also apply for rational numbers.

Similar considerations apply for the cost of arithmetic operations. The cost of operating
two unit-size numbers is taken to be 1 and, as expected, is called unit cost. In the bit-size
case, the cost of operating two numbers is the product of their bit-sizes (for multiplications
and divisions) or its maximum (for additions, subtractions, and comparisons).

The consideration of integer or rational data with their associated bit size and bit cost
for the arithmetic operations is usually referred to as the Turing model of computation (
e.g. see [22]). The consideration of idealized reals with unit size and unit cost is today
referred as the BSS model of computation (from Blum, Shub and Smale [2]), which is what
we have used in this paper, with exact real arithmetic operations (i.e., ignoring round-off
errors).

A basic concept related to both the Turing and the BSS models of computation is
that of polynomial time. An algorithm A is said to be a polynomial time algorithm if the
running time of all instances of the problem is bounded above by a polynomial in the size
of the problem. A problem can be solved in polynomial time if there is a polynomial time
algorithm solving the problem.

The notion of polynomial time is usually taken as the formal counterpart of the more
informal notion of efficiency. One not fully identify polynomial-time with efficiency since
high degree polynomial bounds can hardly mean efficiency. Yet, many basic problems
admitting polynomial-time algorithms can actually be efficiently solved. On the other
hand, the notion of polynomial-time is robust and it is the ground upon which complexity
theory is built.
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Linear programming (LP) has played a distinguished role in complexity theory. It has
a primal-dual form:

Primal: minimize cTx
subject to Ax = b,

x ≥ 0,
(1)

and
Dual: maximize bTy

subject to s = c− ATy ≥ 0,
(2)

where A ∈ IRm×n is a given real matrix with rank m, c ∈ IRn and b ∈ IRm are given real
vectors, and x ∈ IRn and (y ∈ IRm, s ∈ IRn) are unknown real vectors. Vector s is often
called dual slack vector. We denote the LP problem as LP (A,b, c).

In one sense LP is a continuous optimization problem since the goal is to minimize a
linear objective function over a convex polyhedron. But it is also a combinatorial problem
involving selecting an extreme point among a finite set of possible vertices. An optimal
solution of a linear program always lies at a vertex of the feasible polyhedron. Unfortu-
nately, the number of vertices associated with a set of n inequalities in m variables can be
exponential in the dimensions—in this case, up to n!/m!(n−m)!. Except for small values
of m and n, this number is sufficiently large to prevent examining all possible vertices for
searching an optimal vertex.

The LP problem is polynomial solvable under the Turing model of computation, proved
by Khachiyan [11] and also by Karmarkar [10] and many others. But the problem, whether
there is a polynomial-time algorithm for LP under the BSS model of computation, remains
open. It turns out that two instances of the LP problem with the same (unit) size may
result in drastically different performances under an interior-point algorithm. This has
lead during the past years to some research developments relating complexity of interior-
point algorithms with certain “condition” measures for linear programming ([24, 29, 7, 9]).
One particular example is the Vavasis-Ye algorithm, which interleaves small steps with
longer layered least-squares (LLS) steps to follow the central path, see [26, 17, 20, 21]. The
algorithm, which will be called “layered-step interior point” (LIP), terminates in a finite
number of steps. Furthermore, the total number of iterations depends only on A: the
running time is O(n3.5c(A)) iterations, where c(A) is the condition measure of the full-rank
constraint matrix A defined in [26]:

c(A) = O(log(χ̄A) + log n), (3)

where
χ̄A = max{‖(AB)−1A‖ : AB ∈ IRm×m is a basic matrix of A}

This is in contrast to other interior point methods, whose complexity depend on the vectors
b and c as well as on the matrix A. This is important because there are many classes of
problems in which A is “well-behaved” but b and c are arbitrary vectors. ‖ · ‖, without
subscript, incidates 2-norm through out this paper.
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2 The Markov Decision Problem

In this paper, we present a new complexity result for solving the real-number Markov
decision problem (MDP), a special class of real-number linear programs with the Leontief
matrix structure due to de Ghellinck [5], D’Epenoux [6] and Manne [14] (see also the recent
survey by Van Roy [25]):

minimize cT
1 x1 . . . + cT

j xj + . . . +cT
nxn

subject to (E1 − θP1)x1 . . . + (Ej − θPj)xj + . . . (En − θPn)xn = e,
x1, . . . xj, . . . xn, ≥ 0,

where e is the vector of all ones, Ej is the n × k matrix whose jth row are all ones and
everywhere else are zeros, Pj is an n× k Markov or column stochastic matrix such that

eT Pj = eT and Pj ≥ 0, j = 1, . . . , n.

Here, decision vector of xj ∈ IRk represents the decision variables associated with jth state’s
k actions and cj is its cost vector corresponding to the k action variables. The optimal
solution to the problem will select one optimal action from every state, which form an
optimal feasible basis. The dual of the problem is given by

maximize eTy
subject to (E1 − θP1)

Ty ≤ c1,
. . . . . . . . .

(Ej − θPj)
Ty ≤ cj,

. . . . . . . . .
(En − θPn)Ty ≤ cn.

If we sort the decision variables by actions, the MDP can be also written as:

minimize (c1)Tx1 . . . + (ci)Txi + . . . +(ck)Txk

subject to (I − θP 1)x1 . . . + (I − θP i)xi + . . . +(I − θP k)xk = e,
x1, . . . xi, . . . xk, ≥ 0.

(4)

And its dual (by adding slack variables) is

maximize eTy
subject to (I − θP 1)Ty + s1 = c1,

. . . . . . . . .
(I − θP i)Ty + si = ci,

. . . . . . . . .
(I − θP k)Ty + sk = ck,
s1, . . . , si, . . . , sk ≥ 0.

(5)

4



Here, xi ∈ IRn represents the decision variables of all states for action i, I is the n × n
identity matrix, and P i, i = 1, . . . , k, is an n× n Markov matrix (eT P i = eT and P i ≥ 0).
Comparing to the LP standard form, we have

A = [I − θP 1, . . . , I − θP k] ∈ IRn×nk, b = e ∈ IRn, and c = (c1; . . . ; ck) ∈ IRnk.

In the MDP, θ is the so called discount factor such that

θ =
1

1 + r
≤ 1,

where r is the interest rate and it is assumed strictly positive in this writing so that
0 ≤ θ < 1. The problem is to find the best action for each state so that the total cost is
minimized.

There are four current effective methods for solving the MDP: the value iteration
method, the policy iteration method, regular LP interior-point algorithms, and the Vavasis-
Ye algorithm. In terms of the worst-case complexity bound on the number of arithmetic
operations, they (without a constant factor) are summarized in the following table for k = 2
(see Littman et al. [13], Mansour and Singh [15] and references therein).

Value-Iteration Policy-Iteration LP-Algorithms Vavasis-Ye New Method

n2c(Pj, cj, θ) · 1
1−θ

n3 · 2n

n
n3c(Pj, cj, θ) n6c′(Pj, θ) n4 · log 1

1−θ

where c(Pj, cj, θ) and c′(Pj, θ) are conditional measures of data (Pj, cj, θ), j = 1, . . . , k.
When data (Pj, cj, θ) are rational numbers, these condition measures are generally bounded
by the total bit size of the input.

In this paper we develop a “combinatorial” interior-point algorithm, when the discount
factor θ is strictly less than 1, to solve the MDP problem in at most O(n1.5(log 1

1−θ
+log n))

interior-point method iterations and total O(n4(log 1
1−θ

+ log n)) arithmetic operations.
Note that this bound is only dependent logarithmically on 1 − θ. If θ is rational, then
log 1

1−θ
is bounded above by the bit length of θ. This is because, when θ = q/p where p

and q are positive integers with p ≥ q + 1, we have

log
1

1− θ
= log(p)− log(p− q) ≤ log(p) ≤ bit length of θ.

Our method is closely related to the work of Ye [30] and Vavasis and Ye [26]. To our
knowledge, this is the first strongly polynomial-time algorithm for solving the MDP when
the discount factor (interest rate) is a constant less than 1 (greater than 0).
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3 LP Theorems and Interior-Point Algorithms

We first describe few general LP theorems and a classical predictor-corrector interior-point
algorithm.

3.1 Optimality condition and central path

The optimality conditions for all optimal solution pairs of LP (A,b, c) may be written as
follows:

Ax = b,

ATy + s = c,

SXe = 0, (6)

x ≥ 0, s ≥ 0

where X denotes diag(x) and S denotes diag(s), and 0 and e denotes the vector of all
0’s and all 1’s, respectively. The third equation is often referred as the complementarity
condition.

If LP (A,b, c) has an optimal solution pair, then there exists a unique index set B∗ ⊂
{1, . . . , n} and N∗ = {1, . . . , n} \ B∗, such that every x, satisfying

AB∗xB∗ = b, xB∗ ≥ 0, xN∗ = 0,

is an optimal solution for the primal; and every (y, s), satisfying

sB∗ = cB∗ − AT
B∗y = 0, sN∗ = cN∗ − AT

N∗y ≥ 0,

is an optimal solution for the dual. This partition is called the strict complementarity
partition, since a “strictly” complementary pair (x,y, s) exists, meaning

AB∗xB∗ = b, xB∗ > 0, xN∗ = 0,

and
sB∗ = cB∗ − AT

B∗y = 0, sN∗ = cN∗ − AT
N∗y > 0.

Here, for example, subvector xB contains all xi for i ∈ B ⊂ {1, . . . , n}.
Consider the following equations:

Ax = b,

ATy + s = c,

SXe = µe, (7)

x > 0, s > 0.
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These equations always have a unique solution for any µ > 0 provided that the primal
and dual problem both have interior feasible points (x > 0, s > 0). The solution to these
equations, written (x(µ),y(µ), s(µ)), is called the central path point for µ, and the aggregate
of all points, as µ ranges from 0 to ∞, is the central path of the LP problem, see [1, 16].
Note that as µ → 0+, central path equation (7) approaches optimality condition (6), and
(x(µ),y(µ), s(µ)) approaches an optimal solution.

The following is a geometric property of the central path:

Lemma 1 Let (x(µ),y(µ), s(µ)) and (x(µ′),y(µ′), s(µ′)) be two central path points such
that 0 ≤ µ′ < µ. Then for any i,

s(µ′)i ≤ ns(µ)i and x(µ′)i ≤ nx(µ)i.

In particular, given any optimal (x∗,y∗, s∗), we have, for any µ > 0 and any i,

s∗i ≤ ns(µ)i and x∗i ≤ nx(µ)i.

Proof. The lemma was proved in [26]. We reprove the second part here to give the reader
an insight view on the structure. Since x(µ)− x∗ ∈ N (A) and s(µ)− s∗ ∈ R(AT ) we have
(x(µ)− x∗)T (s(µ)− s∗) = 0. Since (x∗,y∗, s∗) is optimal, we have (x∗)T s∗ = 0. These two
equations imply

(x∗)T s(µ) + (s∗)Tx(µ) = x(µ)T s(µ) = nµ.

Dividing µ on both sides and noting x(µ)is(µ)i = µ for each i = 1, . . . , n, we have

n∑

i=1

x∗i
x(µ)i

+
n∑

i=1

s∗i
s(µ)i

= n.

Because each term in the summation is nonnegative, for any i = 1, . . . , n we have

x∗i
x(µ)i

≤ n and
s∗i

s(µ)i

≤ n.

3.2 Predictor-corrector interior-point algorithm

In the predictor-corrector path-following interior point method of Mizuno et al. [18], one
solves (7) approximately to obtain an “approximately centered” point (x,y, s, µ) such that

η(x,y, s, µ) := ‖SXe/µ− e‖ ≤ η0, (8)
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where, say, η0 = 0.2 throughout this paper. Then each iteration decreases µ towards zero,
and for each new value of µ, the approximate point (x,y, s, µ) to central path equation (7)
is updated.

For any point (x,y, s) and µ where η(x,y, s, µ) ≤ 1/5, it has been proved that

(3/4)si ≤ s(µ)i ≤ (5/4)si

(3/4)xi ≤ x(µ)i ≤ (5/4)xi.
(9)

In general, since each diagonal entry of SX is between µ(1 − η0) and µ(1 + η0), we have
the two inequalities √

µ(1− η0) ≤ ‖(SX)1/2‖ ≤
√

µ(1 + η0)
1√

µ(1+η0)
≤ ‖(SX)−1/2‖ ≤ 1√

µ(1−η0)
,

(10)

which will be used frequently during the upcoming analysis.

Given a near central path point (x,y, s, µ) such that η(x,y, s, µ) ≤ η0, the newly
decreased µ can be calculated by solving two related least squares problems in a predictor
step. Let

D = X−1S, (11)

and let (δȳ, δs̄) be the solution to a weighted least-squares problem

min ‖D−1/2(δs + s)‖ subject to δs = −AT δy or δs ∈ R(AT ),

where R(AT ) denotes the range space of AT ; and let δx̄ be the solution to the related
weighted least-squares problem

min ‖D1/2(δx + x)‖ subject to Aδx = 0 or δx ∈ N (A),

where N (A) denotes the null space of A.

It is not hard to see that (δx̄, δȳ, δs̄) satisfy the following equations:

Aδx̄ = 0,

AT δȳ + δs̄ = 0, (12)

D1/2δx̄ + D−1/2δs̄ = −X1/2S1/2e.

These equations imply that

‖D1/2δx̄‖2 + ‖D−1/2δs̄‖2 = nµ. (13)

The new iterate point (x̄, ȳ, s̄), defined by

(x̄, ȳ, s̄) = (x,y, s) + α(δx̄, δȳ, δs̄)
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for a suitable step size α ∈ (0, 1], is a strictly feasible point. Furthermore,

η(x̄, ȳ, s̄, µ(1− α)) ≤ 2η0.

Then, one takes a corrector step—uses the Newton method starting from (x̄, ȳ, s̄) to
generate a new (x,y, s) such that η(x,y, s, µ(1− α)) ≤ η0. Thus, the new µ is reduced by
a factor (1−α) from µ. One can further show that the step size can be greater than 1

4
√

n
in

every iteration. Thus, the predictor-corrector interior-point algorithm reduces µ to µ′ (< µ)
in at most O(

√
n log(µ/µ′)) iterations, while maintaining suitable proximity to the central

path. Moreover, the average arithmetic operations per iteration is O(n2.5). This eventually
results in a polynomial time algorithm in the bit-size computation model—O(n3L), see also
[23, 8, 12, 19].

3.3 Properties of the Markov Decision Problem

For simplicity, we fix k, the number of actions taken by each state, to 2 in the rest of the
paper. Then, the MDP can be rewritten as:

minimize (c1)Tx1 +(c2)Tx2

subject to (I − θP 1)x1 +(I − θP 2)x2 = e,
x1, x2 ≥ 0.

(14)

And its dual is
maximize eTy
subject to (I − θP 1)Ty + s1 = c1,

(I − θP 2)Ty + s2 = c2,
s1, s2 ≥ 0.

(15)

Comparing to the LP standard form, we have

A = [I − θP 1, I − θP 2] ∈ IRn×2n, b = e ∈ IRn, and c = (c1; c2) ∈ IR2n.

Note that any feasible basis AB of the MDP has the Leontief form

AB = I − θP

where P is an n × n Markov matrix chosen from columns of [P 1, P 2], and the reverse is
also true. Most proofs of the following lemma can be found in Dantzig [3, 4] and Veinott
[27].

Lemma 2 The MDP has the following properties:

1. Both the primal and dual MDPs have interior feasible points if 0 ≤ θ < 1.
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2. The feasible set of the primal MDP is bounded. More precisely,

eTx =
n

1− θ
,

where x = (x1;x2).

3. Let x̂ be a basic feasible solution of the MDP. Then, any basic variable, say x̂i, has
its value

x̂i ≥ 1.

4. Let B∗ and N∗ be the optimal partition for the MDP. Then, B∗ contains at least one
feasible basis, i.e., |B∗| ≥ n and |N∗| ≤ n; and for any j ∈ B∗ there is an optimal
solution x∗ such that

x∗j ≥ 1.

5. Let AB be any feasible basis and AN be any submatrix of the rest columns of the MDP
constraint matrix, then

‖(AB)−1AN‖ ≤ 2n
√

n

1− θ
.

Proof. The proof of this lemma is straightforward and based on the expressions

eT P = eT and (I − θP )−1 = I + θP + θ2P 2 + . . . ,

and the fact that P k remains a Markov matrix for k = 1, 2, . . ..

It is easy to verify that

x1 = (I − θP 1)−1e/2 and x2 = (I − θP 2)−1e/2

is an intetior feasile solution to the primal; and

y = −γe

is an interior feasible solution to the dual for sufficiently large γ. This proves (1).

Left multiplying eT to both sides of the constraints of the primal, we have

eT Ax = (1− θ)eTx = n

which proves (2).

Since any basic feasible solution has the form

(I − θP )−1e = (I + θP + θ2P 2 + . . .)e ≥ e,

(3) is proved.
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Since the MDP has at least one basic optimal solution, the proof of (4) follows the
statement of (3).

The proof of (5) is more demanding. Note that any feasible basis

A−1
B = (I − θP )−1 = I + θP + θ2P 2 + . . .

where P is a Markov matrix. Let the ith column of P be Pi. Then we have

‖Pi‖ ≤ eT Pi = 1

because eT Pi is the 1-norm of Pi ≥ 0 and the 2-norm is less than or equal to the 1-norm.
Now, for any vector a ∈ IRn, we have

‖Pa‖ = ‖
n∑

i=1

Pi · ai‖ ≤
n∑

i=1

‖Pi‖ · |ai| ≤
n∑

i=1

|ai| = ‖a‖1

and
‖a‖1 ≤

√
n · ‖a‖,

which imply that
‖Pa‖ ≤ √

n · ‖a‖
or

‖P‖ ≤ √
n

for any Markov matrix P .

Furthermore, each component of AN ∈ IRn×t (t ≤ 2n) is between −1 and 1. Let the ith
column of AN be (AN)i. Then, ‖(AN)i‖ ≤

√
n and, for any vector d ∈ IRt, we have

‖ANd‖ ≤
t∑

i=1

‖(AN)i‖ · |di| ≤
√

n · ‖d‖1 ≤
√

n ·
√

t · ‖d‖ ≤ 2n · ‖d‖.

Finaly, for any vector d ∈ IRt,

‖A−1
B ANd‖ = ‖(I + θP + θ2P 2 + . . .)ANd‖

≤ ‖ANd‖+ θ‖PANd‖+ θ2‖P 2ANd‖+ . . .

≤ ‖ANd‖+ θ‖P‖ · ‖ANd‖+ θ2‖P 2‖ · ‖ANd‖+ . . .

≤ ‖ANd‖+ θ
√

n · ‖ANd‖+ θ2
√

n · ‖ANd‖+ . . .

≤
√

n

1− θ
· ‖ANd‖

≤
√

n

1− θ
· 2n · ‖d‖,

or

‖(AB)−1AN‖ ≤ 2n
√

n

1− θ
.
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Using the lemma, we may safely assume that c ≥ 0 since using c + γe for any number
γ is equivalent to using c in the MDP.

We also remark that the condition measure χ̄A mentioned earlier and used in [26, 17, 20]

cannot be bounded by 2n
√

n
1−θ

of (5) of the lemma, since it is the maximum over all possible
(feasible or infeasible) bases. Consider a two-state and two-action MDP where

A =

[
1− θ 0 1− θ(1− ε) 0

0 1− θ −θ · ε 1− θ

]

Here, for any given θ > 0, ‖(AB)−1A‖ can be arbitrarily large as ε → 0+ when

AB =

(
1− θ 1− θ(1− ε)

0 −θ · ε
)

.

In fact, all other condition measures ([24, 29, 7, 9]) used in complexity analyses for general
LP can be arbitrarily bad for the MDP. In other words, our new complexity result achieved
in this paper cannot be derived by simply proving that the MDP is well conditioned based
on one of these measures.

4 Combinatorial interior-point method for solving the

MDP

We now develop a combinatorial interior-point method for solving the MDP. The method
has at most n major steps, where each major step identifies and eliminates at least one
variable in N∗ and then the method proceeds to solve the MDP with at least one variable
less. Each major step uses at most O(n0.5(log 1

1−θ
+ log n)) predictor-corrector iterations.

This elimination process shares the same spirit of the “build-down” scheme analyzed in
[30]

4.1 Complexity to compute a near central-path point

Like any other interior-point algorithm, our method needs a near central-path point pair
satisfying (8) to start with. We now analyze the complexity to generate such a point, and
show this can be accomplished in O(n log 1

1−θ
) classical interior-point algorithm iterations.

Let
(xi)0 = (I − θP i)−1e, i = 1, 2

and

x0 =

(
1
2
(x1)0

1
2
(x2)0

)
.
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Thus, x0 is an interior feasible point for the MDP and

x0 ≥ 1

2
e ∈ IR2n.

Let

y0 = −γe and s0 =

(
(s1)0

(s2)0

)
=

(
c1 + γ(1− θ)e
c2 + γ(1− θ)e.

)

where γ is chosen sufficiently large such that

s0 > 0 and γ ≥ cTx0

n
.

Denote µ0 = (x0)T s0/2n and consider the potential function

φ(x, s) = 2n log(sTx)−
2n∑

j=1

log(sjxj).

Let cj(≥ 0) be the jth coefficient of c = (c1; c2) ≥ 0. Then, we have

φ(x0, s0) = 2n log(cTx0 + γ(1− θ)
n

1− θ
)−

2n∑

j=1

log(s0
jx

0
j)

≤ 2n log(cTx0 + γ · n)−
2n∑

j=1

log(s0
j/2) (since x0

j ≥ 1/2)

= 2n log(2n)−
2n∑

j=1

log
2n(cj/2 + γ(1− θ)/2)

cTx0 + γ · n

≤ 2n log(2n)−
2n∑

j=1

log
nγ(1− θ)

cTx0 + γ · n (since c ≥ 0)

≤ 2n log(2n)−
2n∑

j=1

log
nγ(1− θ)

2γ · n (since γ ≥ cTx0/n)

= 2n log(2n) + 2n log(
2

1− θ
).

Therefore, using the primal-dual potential reduction algorithm, we can generate an
approximate central path point (x0,y0, s0) such that

η(x0,y0, s0, µ0) ≤ η0.

in at most O(n(log 2
1−θ

+ log n)) interior-point algorithm iterations where each iteration
uses O(n3) arithmetic operations, see [28],
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4.2 Eliminating variables in N ∗

Now we present the major step of the method to identify and eliminate variables in N∗.
We start with the following lemma for a central path property of the MDP:

Lemma 3 For any µ ∈ (0, µ0], the central path pair of (14) and (15) satisfies

x(µ)j ≤ n

1− θ
and s(µ)j ≥ 1− θ

n
µ for every j = 1, . . . , 2n;

and

x(µ)j ≥ 1

2n
and s(µ)j ≤ 2nµ for evey j ∈ B∗.

Proof. The upper bound on x(µ)j is from that the sum of all primal variables is equal to
n

1−θ
. The lower bounds on x(µ)j are direct results of Lemmas 1 and 2(4) and noting there

are 2n variables in (14). The bounds on s(µ)j are from the central path equations of (7).

Define a gap factor

g =
10n2(1 + η0)

(1− θ)
√

1− η0

(> 1). (16)

For any given approximate central path point (x,y, s) such that

η(x,y, s, µ) ≤ η0,

define

J1(µ) = {j : sj ≤ 8nµ

3
},

J3(µ) = {j : sj ≥ 8nµ · g
3

}
and J2(µ) be the rest of indices. Thus, for any j1 ∈ J1(µ) and j3 ∈ J3(µ), we have

sj1

sj3

≤ 1

g
< 1. (17)

From Lemma 3 and (9), for any j ∈ B∗, we observe

sj =
sj

s(µ)j

s(µ)j ≤ sj

s(µ)j

2nµ ≤ 4

3
2nµ =

8nµ

3
.

Therefore, we have

14



Lemma 4 Let J1(µ) be defined above for (14) and (15) at any 0 < µ ≤ µ0. Then, every
variable of B∗ is in J1(µ) or B∗ ⊂ J1(µ) for any 0 < µ ≤ µ0, and, thereby, J1(µ) always
contains an optimal basis. Moreover, since B∗ ⊂ J1(µ) and g > 1, we must have J3(µ) ⊂
N∗.

J3(µ) ⊂ N∗ implies that every primal variable in J3(µ) belongs to N∗ and it has zero
value at any primal optimal solution. Therefore, if J3(µ) is not empty, we can eliminate
every primal variable (and dual constraint) in J3(µ) from further consideration. To restore
the primal feasibility after elimination, we solve the least squares problem:

min
δx1

‖D1/2
1 δx1‖ subject to A1δx1 = A3x3.

Here, subscript · denotes the subvector or submatrix of index set J·(µ), and D1 = X−1
1 S1.

Note that the problem is always feasible since A1 contains B∗ and B∗ contains at least one
optimal basis.

Then, we have

A1(x1 + δx1) + A2x2 = A1x1 + A2x2 + A3x3 = b.

The question is whether or not x1 + δx1 > 0. We show below that

Lemma 5 Not only A1(x1 + δx1) + A2x2 = b and (x1 + δx1;x2) > 0, but also

η((x1 + δx1;x2),y, (s1; s2), µ) ≤ 2η0.

That is, they are a near central-path point pair for the same µ of (14) and (15) after
eliminating every primal variables and dual constraints in J3(µ).

Proof. Let AB be an optimal basis contained by A1 and B be the index set of the basis.
Then

A1D
−1
1 AT

1 º ABD−1
B AT

B Â 0;

where DB = X−1
B SB, U º V means that matrix U − V is positive semidefinite, and V Â 0

means that matrix V is positive definite. Note that

δx1 = D−1
1 AT

1 (A1D
−1
1 AT

1 )−1A3x3

so that

‖D1/2
1 δx1‖ = ‖D−1/2

1 AT
1 (A1D

−1
1 AT

1 )−1A3x3‖
=

√
(A3x3)T (A1D

−1
1 AT

1 )−1A3x3

≤
√

(A3x3)T (ABD−1
B AT

B)−1A3x3

15



= ‖D−1/2
B AT

B(ABD−1
B AT

B)−1A3x3‖
= ‖D1/2

B A−1
B A3x3‖

≤ ‖D1/2
B ‖ · ‖A−1

B A3‖ · ‖x3‖
≤ ‖D1/2

1 ‖ · ‖A−1
B A3‖ · ‖x3‖ (since B ⊂ J1(µ))

= ‖S1(X1S1)
−1/2‖ · ‖A−1

B A3‖ · ‖S3X3S
−1
3 e‖

≤ ‖S1‖ · ‖(X1S1)
−1/2‖ · ‖A−1

B A3‖ · ‖S3X3‖‖S−1
3 e‖

≤ ‖S1‖ · 1√
µ(1− η0)

· ‖A−1
B A3‖ · µ(1 + η0)‖S−1

3 ‖√n

=

√
nµ(1 + η0)√

1− η0

· ‖S1‖‖S−1
3 ‖ · ‖A−1

B A3‖

≤
√

nµ(1 + η0)√
1− η0

· 1

g
· 2n

√
n

1− θ
(from (17) and Lemma 2(5))

=
√

nµ · 1

5
√

n

=

√
µ

5
.

Thus,

‖X−1
1 δx1‖ = ‖(X1S1)

−1/2D
1/2
1 δx1‖

≤ ‖(X1S1)
−1/2‖‖D1/2

1 δx1‖
≤ ‖(X1S1)

−1/2‖ ·
√

µ

5

≤ 1√
µ(1− η0)

·
√

µ

5

=
1√

1− η0

· 1

5
< 1,

which implies
x1 + δx1 = X1(e + X−1

1 δx1) > 0.

Furthermore,
∥∥∥∥∥

(
S1 0
0 S2

) (
x1 + δx1

x2

)
− µe

∥∥∥∥∥ =

∥∥∥∥∥

(
S1 0
0 S2

) (
x1

x2

)
− µe +

(
S1δx1

0

)∥∥∥∥∥

≤
∥∥∥∥∥

(
S1 0
0 S2

) (
x1

x2

)
− µe

∥∥∥∥∥ +

∥∥∥∥∥

(
S1δx1

0

)∥∥∥∥∥
≤ ‖Sx− µe‖+ ‖S1δx1‖
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≤ η0µ + ‖(S1X1)
1/2D

1/2
1 δx1‖

≤ η0µ + ‖(S1X1)
1/2‖ · ‖D1/2

1 δx1‖
≤ η0µ +

√
µ(1 + η0) ·

√
µ

5

≤ η0µ +

√
1 + η0

5
µ

≤ 2η0µ.

5 Complexity to Make J3(µ) 6= ∅
The question now is what to do if J3(µ) is empty at, say, initial µ0. Well, we directly apply
the predictor-corrector method described earlier, that is, we compute the predictor step
(12) at (x,y, s) where η(x,y, s, µ0) ≤ η0.

We first take care of the trivial case that N∗ = ∅.

Lemma 6 If N∗ = ∅, then the solution to (12) is

δs̄ = −s and δx̄ = 0.

That is, any feasible solution to (14) is an optimal solution.

Proof. If N∗ = ∅, we have s ∈ R(AT ). Thus, the minimal value of

min ‖D−1/2(δs + s)‖ subject to δs = −AT δy or δs ∈ R(AT )

is 0 or δs̄ = −s. Then, from (12) we have δx̄ = 0.

Therefore, we may assume that

ε0 :=
1√
µ0
‖D−1/2(δs̄ + s)‖ =

1√
µ0
‖D1/2δx̄‖ (18)

is strictly greater than 0. Let

ᾱ = max

{
0, 1−

√
nε0

η0

}
. (19)

Now take a step defined by the directions of (12); we compute a new feasible iterate

x̄ = x + ᾱδx̄,
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ȳ = y + ᾱδȳ,

and
s̄ = s + ᾱδs̄.

If ᾱ < 1, we have the following centrality lemma.

Lemma 7 Let ᾱ < 1 in (19). Then the new iterate (x̄, ȳ, s̄) is strictly feasible. Further-
more,

η(x̄, ȳ, s̄, µ0(1− ᾱ)) ≤ 2η0.

Proof. The lemma is clearly true if ᾱ = 0. Thus, we assume that ᾱ > 0, that is,
√

nε0

η0

< 1 or ᾱ = 1−
√

nε0

η0

> 0.

Let α ∈ (0, ᾱ] and let
x(α) = x + αδx̄,

y(α) = y + αδȳ,

and
s(α) = s + αδs̄.

Noting that (12) implies that
Xδs̄ + Sδx̄ = −XSe,

we have

µ0(1− α) · η(x(α),y(α), s(α), µ0(1− α))

= ‖S(α)X(α)e− µ0(1− α)e‖
= ‖(1− α)SXe− µ0(1− α)e + α2∆s̄δx̄‖
≤ ‖(1− α)SXe− µ0(1− α)e‖+ ‖α2∆s̄δx̄‖
≤ (1− α)η0µ

0 + α2‖∆s̄δx̄‖
≤ (1− α)η0µ

0 + ‖∆s̄δx̄‖
= (1− α)η0µ

0 + ‖D−1/2∆s̄D1/2δx̄‖
≤ (1− α)η0µ

0 + ‖D−1/2∆s̄‖‖D1/2δx̄‖
≤ (1− α)η0µ

0 +
√

nµ0‖D1/2δx̄‖

= (1− α)η0µ
0 +

√
nε0

η0

η0µ
0

= (1− α)η0µ
0 + (1− ᾱ)η0µ

0

≤ 2η0(1− α)µ0.
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Now, we argue about the feasibility of (x(α),y(α), s(α)). Observe that the proximity
measure ‖S(α)X(α)e/(µ0(1−α))−e‖ is a continuous function of α as α ranges over (0, ᾱ].
We have just proved that the proximity measure is bounded by 2η0 = 0.4 for all α in this
range, and in particular, this proximity is strictly less than 1. This means no x(α)i or s(α)i

for α in this range can be equal to 0 since x(0) = x > 0 and s(0) = s > 0. By continuity,
this implies that s(α) > 0 and x(α) > 0 for all α ∈ (0, ᾱ].

The next lemma identifies a variable in N∗ if ε0 6= 0.

Lemma 8 If ε0 > 0, then there must be a variable indexed j̄ such that j̄ ∈ N∗, and the
central-path value

s(µ)j̄ ≥
√

1− η0(1− θ)µ0

2
√

2n2.5
· ε0,

for all µ ∈ (0, µ0].

Proof. Let s∗ be any optimal dual slack vector for (15). Since s∗ − s ∈ R(AT ), we must
have

√
µ0ε0 = ‖D−1/2(δs̄ + s)‖

≤ ‖D−1/2s∗‖
= ‖(XS)−1/2Xs∗‖
= ‖(XS)−1/2‖ · ‖Xs∗‖
≤ 1√

µ0(1− η0)
· ‖Xs∗‖

≤ 1√
µ0(1− η0)

· ‖X‖‖s∗‖

≤ 1√
µ0(1− η0)

· n

1− θ
‖s∗‖

Thus,

‖s∗‖∞ ≥ ‖s∗‖√
2n

≥
√

1− η0(1− θ)µ0

√
2n1.5

· ε0.

Hence, from Lemma 1 there is a variable indexed j̄, such that j̄ ∈ N∗, and

s(µ)j̄ ≥
‖s∗‖∞

2n
≥
√

1− η0(1− θ)µ0

2
√

2n2.5
· ε0,

for all µ ∈ (0, µ0].
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Now consider two cases: √
nε0

η0

≥ 1. (20)

and √
nε0

η0

< 1. (21)

In Case (20), we have ᾱ = 0, and

ε0 ≥ η0√
n

and s(µ)j̄ ≥
η0

√
1− η0(1− θ)µ0

2
√

2n3
,

where index j̄ ∈ N∗ is the one singled out in Lemma 8. In this case, we continue apply the
predictor-corrector path-following algorithm reducing µ from µ0. Thus, as soon as

µ

µ0
≤ η0

√
1− η0(1− θ)

8
√

2n4g
,

we have

s(µ)j̄ ≥
η0

√
1− η0(1− θ)µ0

2
√

2n3
≥ 4nµ · g,

and at any given approximate central path point (x,y, s) such that η(x,y, s, µ) ≤ η0,

sj̄ ≥
4

5
s(µ)j̄ ≥

16nµ · g
5

≥ 8nµ · g
3

.

That is, j̄ ∈ J3(µ) and it can now be eliminated.

In Case (21), we must have

1− ᾱ =

√
nε0

η0

and s(µ)j̄ ≥
η0

√
1− η0(1− θ)(1− ᾱ)µ0

2
√

2n3

where again index j̄ is the one singled out in Lemma 8. Note that the first predictor step
has reduced µ0 to (1 − ᾱ)µ0. Then, we continue apply the predictor-corrector algorithm
reducing µ from (1− ᾱ)µ0. As soon as

µ

(1− ᾱ)µ0
≤ η0

√
1− η0(1− θ)

8
√

2n4g
,

we have again
s(µ)j̄ ≥ 4nµ · g,

and at any given approximate central path point (x,y, s) such that η(x,y, s, µ) ≤ η0,

sj̄ ≥
4

5
s(µ)j̄ ≥

16nµ · g
5

≥ 8nµ · g
3

.
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That is, j̄ ∈ J3(µ) and it can now be eliminated.

Note that for both cases the number of predictor-corrector algorithm iterations is at
most O(n0.5(log 1

1−θ
+log n)) to reduce µ below the specified values such that J3(µ) contains

at least one variable in N∗ and can be eliminated from the MDP. This major step can be
repeated and the number of such steps should be no more than |N∗| ≤ n (till final N∗ = ∅
and the algorithm terminates by Lemma 6). To summarize:

Theorem 1 The combinatorial interior-point algorithm generates an optimal solution of
(14) in at most n major eliminating steps, and each step uses O(n0.5(log 1

1−θ
+ log n))

predictor-corrector interior-point algorithm iterations.

Using the Karmakar rank-one updating scheme, the average number of arithmetic op-
erations of each predictor-corrector interior-point iteration is O(n2.5). Thus,

Theorem 2 The combinatorial interior-point algorithm generates an optimal solution of
(14) in at most O(n4(log 1

1−θ
+ log n)) arithmetic operations.

The similar proof can apply to the MDP with k actions for each state, where we have

Corollary 1 The combinatorial interior-point algorithm generates an optimal solution of
the MDP in at most (k−1)n major eliminating steps, and each step uses O((nk)0.5(log 1

1−θ
+

log n+log k)) predictor-corrector interior-point algorithm iterations, where n is the number
of states and k is the number of actions for each state. The total arithmetic operations to
solve the MDP is bounded by O((nk)4(log 1

1−θ
+ log n + log k)).
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