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Outline

Part 1:

Risk managing interest rate derivatives:

Model as tool to minimize variance of profit

and loss (P&L)

Compare performance of models in practice

Conclusions:

Some as expected, some controversial
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Part 1:
L]

Comparison of model hedge
performance in practice

Joint work with Antoon Pelsser
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Outline of part 1

Interest rate market

Bermudan swaptions

Model as interpolation tool

Hedging

Interest rate derivatives pricing models
Results
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EUR rates 31-dec-2001

6%

5%
4%

Interest rate market::

1%
0% T

Interest rate (IR) (swap rate) T
Borrowing/lending money over agreed period

of time at agreed rate of interest

= IR may vary with length of deal (tenor)
s = term structure (TS) of IR

Forward borrowing/lending:
Agree now to borrow starting from expiry over
tenor period at agreed interest rate
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EUR rates 31-dec-2001
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Rates move over - °
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Interest rate options

(swaptions)

= Holder has right to enter into borrowing/lending
agreement at strike rate (European)

= Borrow < ‘Call on forward swap rate’
= Lend < ‘Put on forward swap rate’

= Model forward swap rate at expiry as lognormal
= = Black-Scholes type formula
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Black-Scholes for swaptions
7 (0) = PVBP(0){S(0)d(d,) — K(d,)
 In(S(0)/K)+1o’T

B oT

PVBP(0): value of annuity

S(0) : time - zero swap rate

d1,2

® : cumulative normal distribution function
K :strike rate
T :expiry

o : volatility of log swap rate
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Bermudan swaptions

= Bermudan option:

= EXxercisable at discrete set of time points
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Model practice:
Model as interpolation tool

= Need model to price & hedge over-the-counter
(OTC) Bermudan swaptions

= Features multiple swap rates

= Calibrated to relevant European swaption prices

= = Volatility of forward swap rate = quoted

= Some models do not model stochastic volatility
= TS of IR = state variable of model
= Re-calibrate model each day to volatilities



12

Hedging (bucket hedging)

= Offset risk by taking opposite position in
underlying product

= For delta: Price sensitivity wrt swap rate

= Use underlying swaps to hedge

= = justified theoretically

= Vega: sensitivity of price wrt calibration input
volatility
= Financial engineering trick
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One-factor vs multi-factor models

= Short-rate models
= Markov-functional (MF) models
= LIBOR & swap market models

= Accurate full correlation modeling possible in
market models, not in short-rate/MF

= More accurate correlation modeling
= significantly better hedge results?

= Possible in MF to model relevant parts of
correlation

= Short-rate/MF more tractable
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~ Impact correlation on pricing

Bid correlation Ask correlation
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Results from literature

Driessen, Klaassen & Melenberg (JFQA, 2003)
Delta hedging for European options

We look at both delta and delta&vega hedging
10Y Bermudan swaption deal

USD data, 16-Jun-2003 — 16-Jun-2004
Swap rates & ATM swaption volatility

Markov-functional
LIBOR market model
Swap market model
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Expected result:
Delta vs delta&vega hedging

= Delta&vega hedging outperforms delta hedging

400,000 -
300,000 -
200,000 -
100,000 -

0 A
-100,000 -
-200,000 -
-300,000 -
-400,000 -

|
|
|
|
i

-500,000 -

MF 0%

X

& 1st qrt
mmin
A median
X Max
x 3rd grt

X
—cp———
s

._____{.}__.x

MF 0% MF 0% SMM 5% SMM 5% SMM 5% LMM 10%LMM 10%LMM 10%

(unhedged) (delta (delta & (unhedged) (delta (delta & (unhedged) (delta (delta &

Rotte

wdam School of

hedged) vega hedged) vega hedged) vega
hedged) hedged) hedged)

Management / Faculteit Bedrijfskunde E R ® M ERASHUS RESEARCH
. i INSTITUTE OF MAMAGEMENT



Controversial result:
Number of factors & correlation

= Number of factors & correlation do not seem to have
significant impact on hedging
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Rank reduction of correlation
matrices

Based on:
Joint work with Igor Grubisic

&
Joint work with Patrick Groenen
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Outline

= Calibration problem
= Mathematical formulation

= Majorization

= Geometric programming

= Efficiency comparison results
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Calibration problem:
LIBOR market model

= # stochastic factors needed for model to fit to
correlation matrix is equal to rank

= Rank can be as high as dimension

= Not uncommon dimension = 80 or higher

= Reasons for using less factors:
1. Real-world # (significant) factors certainly not

that high
2. Simply draw less random numbers



Mathematical formulation
G1ven:

1. Symmetric #n x n matrix C, unit diagonal
2. Desired rank d
Find : Symmetric #n x n matrix X

To minimize :[|C - X| = ZZ w,(c, - X, f

i=1 j=lI
Such that :rank(X) < d, X >0, X unit diagonal
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Methods in the Literature:
17 publications and counting ...

Brigo, D. (2002), A note on correlation and rank reduction, Downloadable from www.damianobrigo.it.

Brigo, D. & Mercurio, F. (2001), Interest Rate Models: Theory and Practice, Springer, New York

'I:Iury,YB.k(1988), Common Principal Components and Related Multivariate Models, J. Wiley & Sons,
ew York.

Grubisic, |. & Pietersz, R. (2004), Efficient rank reduction of correlation matrices, Working paper,

Utrecht University, Utrecht, Downloadable from www.few.eur.nl/few/people/pietersz.

Higham, N. J. (2002), ‘Computing the nearest correlation matrix—a problem from finance’, IMA Journal

of Numerical Analysis 22, 329-343.

Hull, J. C. & White, A. (2000), ‘Forward rate volatilities, swap rate volatilities, and implementation of
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Zhang, Z. & Wu, L. (2003), ‘Optimal low-rank approximation to a correlation matrix’, Linear Algebra
and its Applications 364, 161-187. 3
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Majorization algorithm:
Straightforward to implement

m fork=0,1,2do
- stop if convergence criterion satisfied
- fori=1,2,...,ndo
_SetB —Z SW; XX 3
- Set A := Iargest eigenvalue of dxd matrix B
_Setz:=\x; — Bx; + ZJ#% WiiTiiX,;
- If z= 0, set i-th row of X equal to z/||z||
- end for
= end for

= Global convergence guaranteed
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Geometric programming:
Correlation matrix as inner product
matrix of a configuration

m LetY be nxd matrix, such that ||Y;||=1
= Then nxn matrix X,

n Xy =<YpY>
= Is a correlation matrix of rank d
= If X is correlation matrix of rank d, then

associated Y can be found
= Freedom of orthogonal transformation
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Geometric programming

= Manifold: S’ xS' x..xS*"'x§ " x . xS
. (n—vd)x
- ' ||m Optimization over curved space (manifolds)
o||m Formulate Hessian, gradient, ‘straight lines’ etc
Y = x|\n in terms of differential geometric means
= = Apply Newton or conjugate gradient

“m Benefit: Hessian & gradient assume their
‘natural’ forms
= = more efficient to calculate

P

= MATLAB implementation ‘LRCM MIN’ available:
= www.few.eur.nl/few/people/pietersz/ :
cageret et Sednd ERIN 250
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MATLAB demonstration

s 3x3 correlation matrices

1 x y\
C=lx 1 =z
v oz 1

= Turns out: rank(C) =2 & C is p.s.d. condition is
equivalent to

0 =det(C) =—{ x*+y° +22}+ 2xyz +1
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Performance profile, n=60, d=5, t=3
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Conclusions

= Partl:
= Interesting hedge tests that have far-reaching
implications for use of models in practice

s Partll:
= Majorization: Quite efficient, easy to implement
= Geometric programming: Efficiency champion

= Papers downloadable from:
= www.few.eur.nl/few/people/pietersz/
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