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Problem Motivation

= Autonomic Systems: Computing systems, Sense-and-Respond systems, etc.

= Consider framework for decentralized optimization and dynamic optimal control
— Decentralized approach is natural for large-scale autonomic systems due to overheads and delays

— But is there any loss in optimality by using a decentralized approach vs. a centralized approach

Central Manager
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General Overview

= Decentralized Optimization
— Conditions for same quality of solution under decentralized as centralized

— Hierarchical algorithmic issues

— Representative application: Central Manager (CM) with multiple Envs

= Stochastic-Process Limits
— Optimal routing problem for each Env (E;) under renewal arrivals

— Optimal routing problem for each Env (E;) under correlated arrivals

Central Manager

= System Dynamics TR
— Dynamics of optimal solutions for both ya \
/// / \\\
CM and E; under time-varying workloads / /
4 .
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Decentralized Optimization: Total Cost

Consider without any loss of generality minimizing a cost function
— Maximizing f(¢) is equivalent to minimizing —(¢)

Cost function f(x,r;,,u;) is associated with each E,, where
— X is the set of variables that can be changed in E;, e.g., routing parameters

— 1;is the set of resources allocated to E; by CM, e.g., server assignments
— U, is the set of external variables that affect E;, e.g., workloads

Set of variables x; must satisfy the set of constraints C,(r;,u,)

Set of resources (r,,...,I,) assigned to Envs must satisfy the set of constraints R

Total cost function for the entire system aggregates the cost of each E,
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Decentralized Optimization: Total Cost
Centralized Objective:
hC = min h(fl(mla T, ul)a Wi e fn(x?’ba T'n, Un))

Lg Ty

Decentralized Objective:

gi(ri,ui) = min fi(@4, ri, u;)
hd = @inh(gl(rlaul)a'"agn(rnaun))

Both subject to x; € C;(r;,u;), (r1,...,mn) € R.
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Decentralized Optimization: Simple Result

Definition 1 A function g : IR"™ — IR™ js called order-
preserving with respect to > (OPGT) if g(x) > g(y)
whenever x > .

Examples of OPGT functions are SUM, MAX and MIN.

Theorem 1 [fthe aggregation function h is OPGT, then
he = hy, 1.€., the decentralized optimal solution is as
good as the centralized optimal solution.

© 2005 IBM Corporation
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Decentralized Optimization: Simple Result

Proof. Clearly hy > hc. Let 27 and r; be the optimal
set of variables and resource allocations such that
h(fl(aj:ia 'ra][i: ul)a et f?’b(a?;]fw ’T‘;;, u?’l)) = hC
while satisfying the constraints (r3,...,7,) € R,z €
C;(r7F,u;). Then by definition
giilry, ag) =< Fules vy us)s
and from the OPGT property of h we have:

hg < h(g1(ry,u1);. .., gn(ry, un))
S h(fl(.’]?ﬂ]i,’f'){,u:]_),...,fn(w;k“?";;,un)) =h’0°
L]
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Decentralized Optimization: Hierarchical Algorithm

= Continuous optimization algorithms generally perform much better if in addition to
evaluating objective function, the gradient of objective function is also available

That is, in addition to evaluating the objective function

E(Tla Lo ar’n) — h(gl(rla ul)a P agn(rna un))s the
gradient VL of the objective function is also available

Note that Vi = 5=; Vi - S with 5t = 0 for i #

Assuming certain forms for constraints, then —% are
the Lagrange multipliers in solving for g;(r;, u;)
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Decentralized Optimization: Hierarchical Algorithm

= Efficient (logical) hierarchical scheme between the CM and the Envs
— CM determines (rq,...,I,) and sends r; to each E,
— Each E; computes and sends g;(r;,u;) to CM along with additional information:

— Corresponding Lagrange multipliers
— Trust region radius and model function used in computing g;(r;,u;)
— CM uses this information to compute the objective function and find next (ry,...,r,)
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Decentralized Optimization: Application

Consider a representative application consisting of
— Set of N client environments E,,...,Ey, hosted by common provider on

— Set of M heterogeneous computing servers S;,...,Sy
— Set of N routers, one for each E,

Decentralized optimization in such an autonomic system includes
— Allocation of servers among the set of Envs (r;)

— Routing of requests among the servers within each Env (X))
— Scheduling of requests at each server within an Env

SLA defines QoS requirements with revenues and penalties for each Env
— Focus on typical scenario in which QoS requirements based on response times

Goal: Minimize global objective function based on the collection of SLAS
— Simplify presentation by considering SLAs with a single QoS class within each Env
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Stochastic-Process Limits: E; Routing Problem

e
=

 1e
®
e

Servers

= Route customers among distributed heterogeneous single-server queues

= Minimize an objective function based on equilibrium sojourn times

= General assumptions for the arrival and service processes

= Customers are routed to distributed queues in a probabilistic manner

= Each single-server queue independently serves customers under FCFS discipline
= QObtain explicit solutions that can be efficiently evaluated in real time

= Static scheduling strategy, but can use in a continual optimization manner
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Stochastic-Process Limits: Mathematical Model

High-speed router in front of NV heterogeneous single-server parallel queues

General arrival point process A (¢) where (marginal) distribution A of corre-
sponding increment process on IR™ has E[A] = A~ ! and Var[A] = o4

Each arrival is independently routed to queue n w.p. p,, P = [py]-,<n;
Decision variables of interest

General iid service times for each queue n following general distributions S,
on IRT with mean E[S,] = ;' and SCV an, independent of all else
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Stochastic-Process Limits: Mathematical Model

Let Z,, be an independent geometrically distributed rv having mean p,, !

Then general arrival point process A,,(t) for queue n has (marginal)
interarrival distribution A,, given by

Zn
An = ) X, (1)
k=1
where X; ~ A
Let \,, = E[A,,] ! be the mean arrival rate of customers to queue n

Let p,, = A/, be the traffic intensity for queue n
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Stochastic-Process Limits: Mathematical Model

Let E[7,,] be the equilibrium sojourn time of customers served at queue n

Let h,, < oo be the holding cost, or weight, per customer per unit time
at queue n

N
(OR1) min Z haE[T5], [ShanXu97]
n=1
N
(OR2) min Z hnE[T0]pn, [Borst95,SethSquios]
n=1

N
s.t. prn =1, p,>0.
n=1
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Stochastic-Process Limits: Renewal Arrivals

Consider the case where A (t) is a renewal process

From (1) and Wald’s equation, we have

E[An] — )\;1 —_— A_lpr_z,la
2pn+272(1 —pn
Var[An] — il e > ( P )7
Pn,
Cfin — )\zgipn + 1= P,

where C7 'is the SCV for the interarrival distribution at queue n

Hence, each queue n is a Gl/Gl/1 queue with arrival and service processes
having mean rates \, and 1, and SCVs C4 and C3
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Stochastic-Process Limits: Renewal Arrivals

Define
Unk = gtttk WYpk E VT Tk B21
NY(@t) = max{£:Uns<t,£>0}, NJ(t) = max{€:V,,<t, £>0}, t>0.
NY(t) e 3
Let C,.(t) = ) ", V.. be the cumulative input process for queue n

Let X, (t) = C,.(t) — t be the associated net-input process for queue n
Define workload process by L, (1) = X, (t) —inf{X(s) A0 :0 < s <t}

Define queue length process by Q,.(t) = NV (t) — NY (Cn(t) — Ln(t))
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Stochastic-Process Limits: Renewal Arrivals

Define L™(t) = m~12L™(mt) and QM(t) = m~1/2Q™(mt)

Then it can be shown that

L = L, as m — oo,
Q. = Qi as m — oo,

where = denotes convergence in distribution, and L,, and Q,, are RBM

Moreover, the stochastic-process limit Q,, for the GI/Gl/1 FCFS queue n is an
RBM with drift A, — 1, < O and variance \,(C3 + C3 )
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Stochastic-Process Limits: Renewal Arrivals

Using this diffusion approximation, we have

An(C3, +C5,)

E[Qn] ~  Pn -+ 2(/-1» 1 )
1 Mo2pn+1—p,+C2
E|7,|] ~ —
[ ] Hn T 2(l1'n — )\pn)

Substituting into (OR1) and (OR2) respectively yields
N
Ao2pn + 1 — pn + C2
min Zhn L g AP e
4 Hn 2(pn — Apn)

N
min E hin L -+ s a Sn B
it Hn Q(Nn = )\Pn)
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Stochastic-Process Limits: Renewal Arrivals

The solution for (OR1-1ID) can be obtained in closed form by applying the
Lagrange method, which yields

pn S =X /h(3203% + X2+ C2 )X — Nhnpun
A A S A/ha(326% + 232+ CZIA — Nhnpin

Obijective function in (OR2-IID) is convex in the decision variables — solution
can be efficiently computed using known methods in convex optimization
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Stochastic-Process Limits: Variance Bound

Consider for each queue n a generic RBM R, having drift ¢,, < 0 and
variance wy,

Derive an upper bound on the variance:

S p
pn n PnWn
Var = ;o < 2N
2 Z( 262 —26,
| n=1 Y

n=1

Include following side constraint in (all) optimization problems
N 2

pn n pnwn
2N < 6
Z< il O

n=1

Decentralized Optimization, Stochastic-Process Limits, System Dynamics | Mark S. Squillante © 2005 IBM Corporation



IBM Thomas J. Watson Research Center

Stochastic-Process Limits: Correlated Arrivals

Dynamics at each queue modeled as Markov modulated G/G/1 queue

Strong approximation
— Results for G/G/1 are well known
— MM case can be obtained by careful probabilistic arguments

Theorem Let Q°(t) be the queue length process of a Markov-modulated
queueing process, and let Z°(t) be the Markov modulated diffusion process:

Z%(t) = osWO(t) + Bst + sup [—osW°(t) — Bst]T.

0<s<t

Then Z°(t) is a strong approximation of Q°(t).

© 2005 IBM Corporation
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Stochastic-Process Limits: Correlated Arrivals

Stationary average queue length approximated by % f Ot E[Z°(s)]ds, where

E[Z°(s)] = E[osW°(t) + Bst] + E[Oiugt[—oaw‘s(t) — Bst] ]
First term:

Lemma Let ms(t) be the mean of the diffusion process W°(t) + st at time
t with initial condition that 5(0) = § € {0, 1}. We then have

Y180 + Y081, |, ¥0(Bo — B1) i
m — e 1 — o~ (ptn
s Yo+ M1 t (7o +41)* ol ’
Y180 + 7061, | 71(Bo — B1) .
_ | 1 — e~ (otrt)
T) o7 k| t 1ol e 8 i S ]
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Stochastic-Process Limits: Correlated Arrivals

Second term:

Derive second term via direct calculations on distributions of running maxi-
mum of a Markov-modulated diffusion process

Let M°(t) be the running maximum process with §(0) = § € {0, 1}

Upon conditioning on the time of the first jump 75 of the Markov chain, we then
have the following recursive result for the distribution of M?° ()
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Stochastic-Process Limits: Correlated Arrivals

Lemma

P[M°(t) >xz] = P[Mo(t) > z]P[ro > t] —I—/ P[Mo(s) > z]F:,(ds) +
0
/ f PIM*(t —s) >z — y]P[Mo(s) < z|Xo(s) € dy]Fx,(dy) Fr,(ds)
0 — 00
PIMi(¢) >xz] = P[Mi(t) > z]P[r > t] —I—f P[Mi(s) > x]F:,(ds) +
0

f / P[MO(t — s) > = — y]P[M1(s) < z|X1(s) € dy]Fx, (dy) Fr,(ds),
0 —00

where Mgs(t) denotes the running maximum of a Brownian motion Xs with
drift 35 and variance o, F;,(ds) denotes the density function of the duration
of the Markov chain §(t) at state § = 0, 1, and Fx,(dy) denotes the density
function of the value of the diffusion process X;(t).
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Stochastic-Process Limits: Correlated Arrivals

Upon taking the Laplace transform on both sides of the equations in lemma
and expressing fOOO P(M%(t) > z)e %dt = G%(x,0), 6 > 0, we obtain

Theorem

G%(z, 0)

4 0o
Hilm 0)+ Z/ C;GO(y, 0)el¥dy
j=1 v 0

e
GYx,8) = Hz(a?,ﬁ’)-l-Z/ DG (y,0)e"dy
i=1 Y0

where
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Stochastic-Process Limits: Correlated Arrivals

We obtain the Laplace transform of the distribution of the running maximum
process with respect to time ¢

We then obtain the steady state distribution of the reflected diffusion process

n—0 6—0

0o 4
+ / CiH (y, 0)e"Vdy]dz

where mo(60) denotes the Laplace transform of mg(¢) with respect to time ¢

f(Bo, B1,70,71) = m0o(0) — Iimlim/ e™ [ H(=z,2)
0
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Stochastic-Process Limits: Correlated Arrivals

Given parameters for Markov modulated queueing system of interest, we have

Theorem The optimal routing probabilities can be obtained by solving the
following optimization problem

N

n=1

N
S.t. E pn — 13 pn 2 O)
=1

Ao = moA and A1 = w1\ denote arrival rate when §(t) takes on value of O
and 1, respectively, w is the invariant probability vector of Q, (5o, 81,70,71) =

mo(0) — limy_olimg_o [*° ™ [H(z,0) + [ 731 CiH (y,0)eXvdy)da
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Stochastic-Process Limits: Correlated Arrivals

= We have extended analysis to establish corresponding weak
convergence and strong approximation results for the semi-
Markov modulated case

= System modulated by chains with general state space

— The Laplace transform can then be obtained by solving a differential-
functional equation, extending scheme developed by M. Jacobsen

= Then the corresponding optimization problem can be
efficiently calculated based on these results
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System Dynamics: Application

Workloads u;, can be modeled as stochastic processes that vary over time

Given nonstationary behavior, allocation decisions made periodically at time t,

— Time scale depends upon the delays, overheads and constraints involved in changing
variables, the QoS requirements, the properties of underlying stochastic processes

Decentralized optimization problem solved at each scheduling epoch t,
— Based on measurements collected during scheduling intervals t=[t;,,t), j=0,...,k-1

— Determine optimal variables x', r;" to be deployed during next scheduling interval t,
— Assume intervals t, are sufficiently long for each Env to reach steady state within t,

Focus on typical scenario in which QoS requirements based on response times
— fi(x,r,u) = £ E[Ti(x,r;,u)] ), where E[T,(x;r;,,u;)] is expected response time for E;
— Aggregate cost function is given by weighted sum of g;(r;,u;)
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System Dynamics: Application

Consider each E; during any scheduling interval 7, in
which the workload processes w,; are stationary

AM;: determine optimal routing variable x; € C;(r;, u;)

gi(ri,w;) = min »  Hj fi(E[T;(z;, S, u;)])

Lq
Sj &r;

C M determine optimal allocation (r3,...,73y) € R

N
by = min Y  Higile,w;)
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System Dynamics: Application

_ 1 x; soe —+ . B;
AMiZ g,z;('r‘,b:,u?;) = min HJ (—+ ol /82 )x’i,ja

i =2 Bij  Mij — NiTij)
S:L. Z Tij = 1; T j = (, )\Cl?z',j < M4
SjE?"Z'
N
: - ) 1 wv va- + .
CM: h;, = min ZH-manH- | fal bi Pz
d Lo J B = N 1) LA
(r15-"N) j=1 ’ S;€r; Hig  Hi,j 4,7
St Z.’L’Z]:l, :B?/,]>O, A:B?/]<IJJZ]
SjE’r‘i

where o; = (Cﬁi —1)/2 and §; = (C?Bz_ +1)/2
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System Dynamics: Application

When A; X;; , w;;, the response time process for E; on server S; 2 r, blows up
— Value of ET;; within interval t, increases with length of 7, s.t. ET;; ! 1as 7 !'1

= Time delays can cause this situation to occur as we will demonstrate
= The smaller the length of 7,, the smaller the explosion in value of ET,; during T,

= The smaller the length of t,, the larger the delay in the dynamical system (due to
fairly consistent overheads and communication delays)

= The smaller the length of t,, the more likely it is that a backlog of customers from
interval T, are not served within this interval and spill over into intervals t,,

= Consider numerical experiments with our results to illustrate and quantify some
of these issues for simplified case where all holding costs are 1

= The two time-varying arrival rates are modeled as sinusoidal functions of time
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System Dynamics: Numerical Results

20 T T
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System Dynamics: Numerical Results

40 T T T T T T T T
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System Dynamics: Numerical Example

40 T T T T T T T T T 1T T T
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System Dynamics: Numerical Example
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General Overview

= Decentralized Optimization
— Conditions for same quality of solution under decentralized as centralized

— Hierarchical algorithmic issues

— Representative application: Central Manager (CM) with multiple Envs

= Stochastic-Process Limits
— Optimal routing problem for each Env (E;) under renewal arrivals

— Optimal routing problem for each Env (E;) under correlated arrivals
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= System Dynamics TR
— Dynamics of optimal solutions for both ya \
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CM and E; under time-varying workloads / /
4 .
Mgr Megr Mer
Env Env Y ® Y Env
fx,r0) fexr,u) feor,n)

Decentralized Optimization, Stochastic-Process Limits, System Dynamics | Mark S. Squillante © 2005 IBM Corporation




