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Problem Motivation

Autonomic Systems:  Computing systems, Sense-and-Respond systems, etc.

Consider framework for decentralized optimization and dynamic optimal control
– Decentralized approach is natural for large-scale autonomic systems due to overheads and delays

– But is there any loss in optimality by using a decentralized approach vs. a centralized approach
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General Overview

Decentralized Optimization
– Conditions for same quality of solution under decentralized as centralized

– Hierarchical algorithmic issues

– Representative application: Central Manager (CM) with multiple Envs

Stochastic-Process Limits
– Optimal routing problem for each Env (Ei) under renewal arrivals

– Optimal routing problem for each Env (Ei) under correlated arrivals

System Dynamics
– Dynamics of optimal solutions for both

CM and Ei under time-varying workloads
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Decentralized Optimization: Total Cost

Consider without any loss of generality minimizing a cost function
– Maximizing f(¢) is equivalent to minimizing –f(¢)

Cost function fi(xi,ri,ui) is associated with each Ei, where
– xi is the set of variables that can be changed in Ei, e.g., routing parameters

– ri is the set of resources allocated to Ei by CM, e.g., server assignments

– ui is the set of external variables that affect Ei, e.g., workloads

Set of variables xi must satisfy the set of constraints Ci(ri,ui)

Set of resources (r1,…,rn) assigned to Envs must satisfy the set of constraints R

Total cost function for the entire system aggregates the cost of each Ei
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Decentralized Optimization: Total Cost
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Decentralized Optimization: Simple Result
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Decentralized Optimization: Simple Result
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Decentralized Optimization: Hierarchical Algorithm

Continuous optimization algorithms generally perform much better if in addition to 
evaluating objective function, the gradient of objective function is also available
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Decentralized Optimization: Hierarchical Algorithm
Efficient (logical) hierarchical scheme between the CM and the Envs

– CM determines (r1,…,rn) and sends ri to each Ei

– Each Ei computes and sends gi(ri,ui) to CM along with additional information:
– Corresponding Lagrange multipliers
– Trust region radius and model function used in computing gi(ri,ui)

– CM uses this information to compute the objective function and find next (r1,…,rn)
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Decentralized Optimization: Application

Consider a representative application consisting of
– Set of N client environments E1,…,EN hosted by common provider on

– Set of M heterogeneous computing servers S1,…,SM

– Set of N routers, one for each Ei

Decentralized optimization in such an autonomic system includes
– Allocation of servers among the set of Envs (ri)

– Routing of requests among the servers within each Env (xi)

– Scheduling of requests at each server within an Env

SLA defines QoS requirements with revenues and penalties for each Env
– Focus on typical scenario in which QoS requirements based on response times

Goal: Minimize global objective function based on the collection of SLAs
– Simplify presentation by considering SLAs with a single QoS class within each Env
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Stochastic-Process Limits: Ei Routing Problem

RouterRouter

ServersServers

Route customers among distributed heterogeneous single-server queues
Minimize an objective function based on equilibrium sojourn times
General assumptions for the arrival and service processes
Customers are routed to distributed queues in a probabilistic manner
Each single-server queue independently serves customers under FCFS discipline
Obtain explicit solutions that can be efficiently evaluated in real time
Static scheduling strategy, but can use in a continual optimization manner
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Stochastic-Process Limits: Mathematical Model
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Stochastic-Process Limits: Mathematical Model
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Stochastic-Process Limits: Mathematical Model
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Stochastic-Process Limits: Renewal Arrivals
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Stochastic-Process Limits: Renewal Arrivals
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Stochastic-Process Limits: Renewal Arrivals
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Stochastic-Process Limits: Variance Bound
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Stochastic-Process Limits: Correlated Arrivals
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Stochastic-Process Limits: Correlated Arrivals
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Stochastic-Process Limits: Correlated Arrivals

We have extended analysis to establish corresponding weak 
convergence and strong approximation results for the semi-
Markov modulated case

System modulated by chains with general state space
– The Laplace transform can then be obtained by solving a differential-

functional equation, extending scheme developed by M. Jacobsen

Then the corresponding optimization problem can be 
efficiently calculated based on these results
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System Dynamics: Application

Workloads ui can be modeled as stochastic processes that vary over time

Given nonstationary behavior, allocation decisions made periodically at time tk
– Time scale depends upon the delays, overheads and constraints involved in changing 

variables, the QoS requirements, the properties of underlying stochastic processes

Decentralized optimization problem solved at each scheduling epoch tk
– Based on measurements collected during scheduling intervals τj=[tj+1,tj), j=0,…,k-1

– Determine optimal variables xi
*, ri

* to be deployed during next scheduling interval τk

– Assume intervals τk are sufficiently long for each Env to reach steady state within τk

Focus on typical scenario in which QoS requirements based on response times
– fi(xi,ri,ui) = fi( E[Ti(xi,ri,ui)] ), where E[Ti(xi,ri,ui)] is expected response time for Ei

– Aggregate cost function is given by weighted sum of gi(ri,ui)
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System Dynamics: Application
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System Dynamics: Application

When λi xi,j ¸ µi,j, the response time process for Ei on server Sj 2 ri blows up
– Value of ETi,j within interval τk increases with length of τk s.t. ETi,j ! 1 as τk ! 1

Time delays can cause this situation to occur as we will demonstrate

The smaller the length of τk, the smaller the explosion in value of ETi,j during τk

The smaller the length of τk, the larger the delay in the dynamical system (due to 
fairly consistent overheads and communication delays)

The smaller the length of τk, the more likely it is that a backlog of customers from 
interval τk are not served within this interval and spill over into intervals τk+m

Consider numerical experiments with our results to illustrate and quantify some 
of these issues for simplified case where all holding costs are 1

The two time-varying arrival rates are modeled as sinusoidal functions of time
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System Dynamics: Numerical Results
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System Dynamics: Numerical Results
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System Dynamics: Numerical Example
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System Dynamics: Numerical Example
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General Overview

Decentralized Optimization
– Conditions for same quality of solution under decentralized as centralized

– Hierarchical algorithmic issues

– Representative application: Central Manager (CM) with multiple Envs

Stochastic-Process Limits
– Optimal routing problem for each Env (Ei) under renewal arrivals

– Optimal routing problem for each Env (Ei) under correlated arrivals

System Dynamics
– Dynamics of optimal solutions for both

CM and Ei under time-varying workloads


