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‘ Introduction I

The mathematical modeling of computer & communication systems necessitates an
accurate representation of the arrival process of information /workload.

Depending on the level of the model, this may be:

e the quantity of packets arrived in some network element before some time ¢,

e a quantity of frames (video), requests (transactions), or any other network Application
Data Unit, tasks (computing), orders (production),

e a quantity of bytes or bits, or CPU seconds.
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‘ Mathematical models of arrivals I

The appropriate mathematical object is a counting process:
N(t) = quantity arrived in the interval [0, ) .
Several cases:
e discrete time: t € N
e continuous time: t € R
e discrete space: N(t) € N

e continuous space: N(t) € R

Introduction — Counting processes



‘ Counting process: illustration I

Process of arrivals of events (arrivals, departures, changes, starts, stops, etc).
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‘ Modeling constraints I

The variety of situations makes the following features necessary:

e relatively complex processes (bursts, temporal correlations, ...)
e possibly large number of sources

e case of use, for simulation and stochastic calculus: distributions, queueing networks,
asymptotics...

. with a mastered algorithmic complexity.

— Markov-modulated processes have these features

Introduction — Counting processes



‘ Markov chains I

A discrete-time Markov chain is a process { X (n),n € N} such that:
o if X(n) =1, then X(n+ 1) = j with probability p;;,

e jumps are independent.

A Markov chain is fully described by its

transition probabilities: p; ;, (7,7) € € X &, or its

transition matrix P.

Introduction - Markov chains



‘ Example of Markov chain I

Transition diagram Transition matrix

0.2 0.2 0.6
P = 0 0.5 0.5
1 0 0
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‘ Continuous time Markov chains I

Let {X(¢),t € RT}, having the following properties. When X enters state ¢:

e X stays in state ¢ a random time, exponentially distributed with parameter 7;,
independent of the past; then

e X jumps instantly in state j with probability p;;. We have p;; € [0,1], p;; = 0 and
> pij=1
J

This process is a continuous-time Markov chain with transition rates

qij = TiPij -

Introduction — Continuous time Markov chains 9



‘ Example I

0.3 0 1 0 -03 03 0
0.6 s = 0 02 04 —06

Introduction — Continuous time Markov chains



‘ Properties and Analysis I

From the computational point of view, the most useful properties of Markov processes
are:

e they are described by matrices,
e computing distributions involves the solution of linear problems

e their superposition and composition leads to simple matrix computations.

Introduction — Markovian analysis 11



‘ Superposition of sources I

If one superposes several Markov-modulated sources, the resulting process is still
Markov-modulated.

The matrices (generators and rates) are obtained using Kronecker sums.

Kronecker product: consider two matrices A (n x n) and B (m x m). Their
Kronecker product is a matrix nm X nm with

AllB e AlnB
AR B = : :
AqB ... A,.B
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Kronecker sum: a matrix nm X nm defined as

AepB = A® Im) + I(n) ® B

AllB Blll

Bl

Bl
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13



Example: for two Markov chains {X1(¢)} and {X2(t)}, we have:
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‘ Markov modulated speeds I

Consider a Markov chain Z which evolves in some state space with a generator

M p— (mab).
There is an “environment” X which is a CTMC with generator G = (g;;).

When X is in state 4, the speed of Z(t) (transition rates) is multiplied by v;:

ratea — b = mgp X v; .

The generator of the process (Z(t), X (t)) has transition rates:

—  (4,b) with rate mgpv;
—  (j,a) with rate g;;

(i, a)
(i, a)

1,0
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In block-matrix form:

v1M + g1l
|
Q — 921

gl

Or, with the Kronecker notation:
Q =

where

g12l g1kl
v2M + gaol g2kl

GI+Veo M.

V = diag(vi,...,vk) .

Markov modulated speeds
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‘ Markov modulated arrivals I

General idea:

e A Markov chain {X(t);t € R or N} € &, the phase

e A counting process IN(t) such that {(X(¢),N(t))} € £ x N is a Markov chain.

r N N\
XE» Q * ¢\‘ oo
N(t) ‘ coeo

Markov Modulated Arrival Processes
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‘ MAP: Markov Arrival Process I

Let {X(t);t € R} be a continuous-time Markov chain.

{N(t);t € R} counts the number of jumps of X in [0,1).

10

10

Markov Modulated Arrival Processes — MAP
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‘ MMPP: Markov Modulated Poisson Process I

Let {X(t);t € R} be a continuous-time Markov chain in £.
Let A\; > 0 be an arrival rate, for each 7 € £.

Arrivals occur according to a Poisson process of time-varying rate Ay (;): thatis, A; as

long as X (t) = 1.

Markov Modulated Arrival Processes — MMPP 19



‘ BMAP: Batch Markov Arrival Process I

Also known as “N-process” (N = Neuts), or the “versatile” process.

{(X(t),N(t));t € R} is a continuous-time Markov chain with a generator structured
as:

Dy D1y Dy ...
Q — Dy Dy Do

Dy D;

A process in the family of Markov additive process.
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‘ MMRP: Markov Modulated Rate Process I

Let {X (¢);t € R} be a continuous-time Markov chain over a finite state space £.
Let r; be arrival rates (or accumulation rates), for each i € €.

Arrivals occur according to a fluid process with rate x4y, that is: with rate r; as long

as X (t) = 1.

Let N(t) the quantity arrived at time ¢:

dN
E(t) = TX(t) -

Note: also known as "Markov drift process .
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Example. £ with three states, 0 < r; < 1o, 73 = 0:

>

A(t)

-t

Markov Modulated Arrival Processes — MMRP
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‘ On /Off Sources I

On /Off processes:

e alternating periods On and Off, with IID durations

e while in period On, arrivals according to a fluid process (constant rate) or a discrete
process (Poisson ou periodic).

e I~ S o
T
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‘ Elaborate multiscale processes I

Process with arrivals of sessions, requests, packets:

can be modeled as well with hierarchical Markov-modulated arrival processes.

Multiscale



‘ Synthesis I

Markov modulated sources of arrivals are described by matrices

e For a MAP:
the generator Q

e For a MMPP/MMRP:
the generator Q, and the rate matrix A

e For a BMAP:

the collection of transition rate matrices Dg, D1, . ..

Most distributions and performance measures are computed using these matrices.

Markov Modulated Arrival Processes — Synthesis
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‘ Examples of computations I

Average arrival rate

For a MMPP/MMRP, with 7 the stationary probability of X,

X = wAl = Z?’(’Z)\Z
€&

Distribution of arrivals

For a MMPP, if A;;(k,T") = P{k arrivals and X (7") = 5 | X(0) = ¢}, then

ZZ’CAZ](]C,T) — (e(Q_(l—Z)A)T)
k

©J
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‘ Semi-Markov Accumulation Process I

A generalization:

e Start with a semi-Markov process: arbitrarily distributed but state-dependent sojourn
times, probabilistic jumps.

e Let the quantity accumulate at a "rate’ depending on the state,

e plus random increments at jump times
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A(t)

(o
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A(t)

(o
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The process of accumulation is an independent-increments process:

constant-rate Poisson diffusion

or a mixture of them.

SMAP
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For independent-increment processes, it is known (e.g. Doob (1952)) that:

E(e@0—2()y = (=(=)o()

For instance:

o(v) = rv for a constant-rate accumulation 7
o(v) = r(l—e7Y) fora Poisson process with rate r
¢(v) = rv+20*v? for a diffusion process with drift r and variance o

2

SMAP
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‘ Distribution of the accumulated quantity I

Q(T) being the quantity accumulated at time T', consider the Laplace transform:

Kmmw)zlgweﬂ Am<am P{Q(T) < 2, X(T) = j|X(0) = i} dzdT

K= (Kij(1: ) g)eexe S = diag (5] (1 + ¢i(v)))ee
1
L = diag ( )
,LL+¢7;(V) icE
Then (standard arguments, e.g. Cox & Miller (1965) for K = 2):
K = L(1-S) + SPK
K = I-SP)""'L (1-5) .
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‘ Decomposition of sources I

e some source of information is composed of several simpler Markov-modulated sources,

Principle:

e some computation is required (transients, autocorrelations, distribution of a queue,
asymptotics, ...)

e Q:is it possible to reduce the computation to that with the smaller sources?

e A:yes: sometimes, a complexity gain is obtained, sometimes even a full decomposition.

Method: Coupled Eigenvalue Problems, after Anick-Mitra-Sondhy (1982), Stern-
Elwalid-Mitra (199x).

Decomposition of sources 33



‘ Markov modulated speeds I

Consider again the Markov chain Z with generator M, modulated by a speed process
with generator G, and speeds V. We have seen that:

Q=GCxI1 +Vx M.

Problem: compute the transition probabilities, whith are the elements of the matrix
eQt A standard method is to diagonalize Q: find its eigenvalues and eigenvectors.

lllustrations — Markov speeds 34



Q=G +Ve M.

If one chooses x and ¥y such that:

M = Az
y = (a1z,...,anT) = a ® x .
Then
1 Q = (e®2) (G 1 +V @ M)

= aGRxzl + aV R xM
= a(G+\V) ® z.

It is enough to choose a such that a(G + AV) = ua for yQ = py to hold.

lllustrations — Markov speeds
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‘ Diagonalization Algorithm I

e Find the spectral elements of M:

e For each 7, find the spectral elements of G + \;V:

— (Mij;aij,bij) 1= 1K, ] =1..N .

e Obtain the spectral elements of Q:

—  (fijy a4 @ T4, b5 ®@y;)  i=1.K, j=1.N.

Diagonalization
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Complexity:

e soit IV be the sise of the state space, K the number of speeds

e Qisofsize NK x NK
e diagonalizing directly is O(N3K?)
e this algorithm is O(K?® + KN?) .

It is not even necessary to store the "big" matrix.

Diagonalization
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‘ Markov modulated queues I

Discrete queues: Markov-modulated arrivals

e exponential /Erlang/Cox service distribution — method of phases, QBDs

e general IID services: method of the embedded Markov chain.
Fluid queues:

e partial differential equations (Chapman-Kolmogoroff).

Queues
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In both cases, the results are:

e Computation through matrix formulas, generating functions, Laplace transforms.

e Spectral expansions of stationary and transient probabilities:

P{W >ux; X =i} = Zai’p e P

p

— asymptotics, or bounds.

P{W > x; X =i}

Y

a; 1

Y

€

—z1T

r — O .

Queues
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‘ The MMPP/GI/1 queue I

Arrivals: MMPP with N states, generator Q and matrix of rates A;

Services: independent with a general distribution H(x), of Laplace transform H*(s).
Distribution of the workload W:

We(s) = s(1—p) g lsl+Q— (1— H*(s)A]™ 1,

g vector to be determined.

Queues 40



This requires diagonalizing sl +Q — (1 — H*(s))A, which can be done more efficiently
using the fact that if:
A=AYg .. gAE)

and that for all k. A s diagonalizable with

AR — RMpEIGH)
where R®ISF) — |(8) 57 D) — diag(wgk)). Then:

(@) (@20) (@)

This work since Q and A have precisely this structure.

—> complexities reduced from (>, Ni)* to >, N}

Queues 41



‘ Equivalent Bandwidth of Information Sources I

Consider the multiplexing problem: K sources feed a buffer with finite buffer space B
and service capacity C' units of work/s.

S1

7

%

2

E

On

Equivalent Bandwidth
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For each source k, let pi be the average rate of arrival of information (the “bandwidth”).

Then the queue with infinite buffer is stable if and only if

Zpk<c.
k

But for the overflow probabilities
P{W? = B} ~ P{W> > B}

is there a similar property?

Equivalent Bandwidth 43



Yes, for Markov-Modulated sources.

Assume source k has rate matrix L*) and generator Q).

1
Let g(¥)(2) be the largest eigenvalue of L&) — ZQF.
2

For B large and o small,

P{W> > B} < « — > g™ (@) < C.
k

1
The quantity g(®) ( Ogé&)) is the equivalent bandwidth at level log(a)/B.

Proved by Elwalid and Mitra, generalized by Kulkarni for general Markov-Renewal
sources.

Equivalent Bandwidth 44
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