Home delivery Innovations in e-fulfillment

TNO Physics and Electronics Laboratory

ContentsOptimization problems

- **Problem situation**
- Logistic concept
- Optimization problems
- Results

Problem situation

E-commerce didn't bring the promised growth Logistic causes:

- High cost of material handling / order picking
- High cost of home delivery
- Low customer service level
- Low delivery hit rate (customer is not at home)

Delivery was not focused on customer requirements:

- Customers can't influence delivery time window
- Communication with customer about delivery to late or not at all

Customer order process

time windows	monday	tuesday	wednesday	thursday	friday	saturday
09.00-11.00			XXX			
11.00-13.00						
13.00-15.00						
15.00-17.00		XXX				
17.00-19.00						
19.00-21.00						

- Customer order through
 the internet
- Customer provides his location
- Pick a time window

e-Logistics Organizer (ELO)

- Customer can control time delivery time window at order acceptation
- Final delivery time window is set at this moment
- Take future orders into consideration
- Influence customer through incentives
- Combination of customer orders with a time window and without time windows

Role for the e-Log Organizer

Advanced order acceptance process

time window	mor	nday	tues	day	wedn	esday	thur	sday	fric	lay	satu	rday
09.00-11.00	-€4	-€6		-€2	ХХ	-€2		-€2				-€2
11.00-13.00												
13.00-15.00		-€2	ХХ	-€6		-€2		-€2				-€2
15.00-17.00			-€4									
17.00-19.00		-€2	ХХ	-€6		-€2		-€2		-€2		-€2
19.00-21.00												

Time window for your delivery will be

Tuesday between 13.00 – 15.00

On-line planning problems

- 1. How to color the agenda considering current and expected future orders
- 2. Choosing between the different customer selected time windows

Results

Basic routes before real order acceptance

- Well spread out but efficient
- Flexible
- Taking region characteristics into account

Acceptance of orders

- m-VRPTW
- Insertion heuristics
- Basic routes slowly adapt to real orders

The final routes

Coloring the agenda

- Insertion cost for each time window
- Color the best green
- Impossible time windows are red

time window	mor	nday	tues	sday	wedn	esday	thur	sday	fric	lay	satu	rday
09.00-11.00	5		35		30							
11.00-13.00	20		22		24							
13.00-15.00	-		3									
15.00-17.00	15		7									
17.00-19.00	25		6									
19.00-21.00	16		17									

Customer behavior

time window	mor	nday	tuesday		
09.00-11.00	1	1	7	7	
11.00-13.00	1		7		
13.00-15.00	1	1	6	1	
15.00-17.00	1		1		
17.00-19.00	1	1	6	1	
19.00-21.00	1		1		

time window	mor	ıday	tuesday		
09.00-11.00	1+2	1+3	7	7	
11.00-13.00	1		7		
13.00-15.00		1	XX	1+3	
15.00-17.00	1		1+2		
17.00-19.00	1	1	XX	1+3	
19.00-21.00	1		1		

• Preference matrix

 Incentives influence preferences

Information poor orders

- Final planning the day before distribution
- Placed into "holding list" in order of priority
- Preference for time windows with highest hit rate

Implementation:

- Real routes (without expectations)
- Insertions heuristics

Optimization

Local search within routes

Tabu search

- "Holding list" (Hoong Chuin Lau e.a.)
- Neighborhood structure
- Find the best solution in neighborhood
- Objective function: hit rates and time

Preliminary results

- Basic routes decreases driving time with 20%
- Customer incentives an extra 10%
- Small influence in directing customers already gives this improvement

Further research

- Basic routes
- Insertion on more than travel time
- Agenda building and coloring (different strategies)

