Capacity Reconfiguration in Logically Fully-Connected Networks

Peter Taylor

Department of Mathematics and Statistics and CUBIN, University of Melbourne, Victoria, 3010.

Abstract

Loss networks have been commonly used to model telecommunication systems for decades. Their mathematical properties were explored by Kelly [2] and Whitt [3] in the mid-1980s. While it may seem that the essentially circuit-switched nature of these models would make them unsuitable for today's packet-switched data networks, there are still applications to IP networks with Label Switched Paths, ATM networks with Virtual Path Connections and optical networks.

In a loss network with complete sharing, a call is accepted if there are sufficiently many free circuits on all the links along its route to meet its capacity requirements. An alternative strategy for managing a network might be to partition the capacity on the physical links to create a logically fullyconnected network which overlies the original network. Such a network could be expected to have a reduced level of performance because calls might be rejected when they could have been accommodated, but the trade-off could be worthwhile in terms of simplicity of management.

In a logically fully-connected network, it is essential that logical capacities be assigned to the links in the correct manner. Given a fixed underlying physical network and traffic loads, it is easy to formulate this as an optimisation problem which can be solved by a number of methods. One which works surprisingly well is a greedy algorithm called XFG, due to Berezner and Krzesinski [1]. Under realistic traffic loads, the performance of such a network is not far below that of a network with complete sharing.

A problem remains in that traffic loads are unlikely to remain fixed over medium to long-term timescales. To overcome this, we need a method for reconfiguring capacity in response to changes in traffic loads. Such methods may also be able to respond to stochastic fluctuations even over short timescales. In this talk, I shall discuss a number of different methods for doing this. They are all distributed in nature and result in the network itself acting like an intelligent entity. I shall also describe some solved and unsolved mathematical problems that have arisen in the course of this work.

References

- BEREZNER, S.A. AND KRZESINSKI A.E. (1998) Call admission and routing in ATM networks based on virtual path separation. in *IFIP TC6/WG6.2, Proceedings of the 4th International Conference on Broadband Communications*, P. J. Kuhn and R. Ulrich, Stuttgart, Germany / (Editors) Chapman and Hall, 461–472 April 1998.
- [2] KELLY, F.P. (1986) Blocking probabilities in large circuit switched networks. Advances in Applied Probability 18 473–505. 1986.
- [3] WHITT, W. (1985) Blocking when service is required from several facilities simultaneously. AT&T Technical Journal, 64 1807–1856.