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Abstract

This talk will outline the surrogate management framework [6], which is presently built
on the filter GPS method for general nonlinear programming without derivatives [5]. This line
of research was motivated by industrial applications, indeed, by a question I was asked by
Paul Frank of Boeing Phantom Works. His group was often asked for help in dealing with
very expensive low dimensional design problems from all around the company. Everyone
there was dissatisfied with the engineering state of the art, which was to substitute inexpensive
surrogates for the expensive “true” objective and constraint functions in the optimal design
formulation. We had been asked the same basic question some time before by Sandia Labs
engineers who were designing a shipping container for nuclear waste. When Paul asked the
question this time, the ideas behind the surrogate management framework (SMF) based on a
GPS meta-algorithm occurred to us, and we hope to demonstrate in this talk just how simple
that answer is.

The surrogate management framework is unreasonably effective in practice, where most
of the application are extended valued and certainly nondifferentiable. This has forced Charles
Audet and me to begin to learn some nonsmooth analysis [7, 8].

There are three aspects to this work: lessons I have learned in working with industry, the
mathematical content in the specific work currently underway, which was treated in the first
talk, and the gratifying numerical results we have obtained on real problems, e.g. [2, 1]. There
is not time to do justice to all these aspects, but I will try to focus on the first and third.
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