
Heavy-tailed distributions

We now focus on classes of distributions for

which E(eεX) = ∞, ε > 0.

Given a non-negative random variable (r.v.) X,

its distribution function (d.f.) is denoted by

F (x) = P (X ≤ x) and its tail by F (x) = 1 −
F (x) = P (X > x). A d.f. F (or the r.v. X) is

said to be heavy-tailed if F (x) > 0, x ≥ 0, and

for all y ≥ 0,

lim
x→∞P (X > x+y | X > x) = lim

x→∞
F (x + y)

F (x)
= 1.

(1)

Letting a(x) ∼ b(x) mean that a(x)/b(x) → 1

as x → ∞, we can express (1) as

F (x + y) ∼ F (x), for all y ≥ 0.
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Intuitively this means that

if X ever exceeds a large value, then it

is likely to exceed any larger value as

well; its tail is heavy or fat or long.

We denote the class of heavy-tailed distribu-

tions by L (and use the notation F ∈ L or

X ∈ L).

Heavy-tailed distributions differ sharply with the

exponential d.f. F (x) = 1−e−λx which satisfies

F (x + y)

F (x)
= e−λy, x ≥ 0, y ≥ 0,

and hence is not heavy-tailed.
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Examples:

1. (Pareto:) F (x) = x−α, x ≥ 1, with α >

0. (Many variations on this exist, such as

F (x) = ( c
c+x)

α, x ≥ 0, with c > 0 and

α > 0. )

2. (Lognormal:) Density

f(x) =
1

xσ
√

2π
e
−(ln(x)−µ)2

2σ2 , x > 0,

with σ > 0 and µ ∈ (−∞,∞). This is the

distribution of the r.v. X = eY where Y is

normal with mean µ and variance σ2.

3. (Heavy-tailed Weibull:) F (x) = e−λxα
, x ≥

0, with λ > 0 and 0 < α < 1. Such a r.v.

X can be derived from an exponential r.v.

P (Y > x) = e−λx via the transformation

X = Y 1/α.
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A very important class is (Regularly varying

tails:) With α ≥ 0, F is said to be regularly

varying with index −α if it is a regularly varying

function, that is, if

lim
x→∞

F (tx)

F (x)
= t−α, t > 0.

Such tails can be equivalently represented in

the form F (x) = L(x)x−α, where L(x) is a

slowly varying function (that is, regularly vary-

ing with α = 0; L(tx)/L(x) → t). Examples

of regularly varying tails include the Pareto

tail, but by using slowly varying factors such

as L(x) = c ln(x) or c ln(ln(x)), or a function

L(x) that converges to a constant, a large va-

riety of tails is included here.
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Much of the beginning of heavy-tailed appli-

cations to queues began with using regularly

varying tails, due to their nice form and relative

ease of manipulation. Even today, sometimes

it is possible/desirable to first prove a result

for regularly varying tails to motivate trying to

prove the result more generally. These tails

however are not exhaustive (they don’t con-

tain the Weibull for example) and it turns out

that a larger class of heavy-tailed distributions

called subexponential distributions has become

the standard, and includes all the examples we

have given.
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Definition 1 (Subexponential distributions)

The d.f. F (or the r.v. X) is called subexpo-

nential if F (x) > 0, x ≥ 0, and for all n ≥ 2,

lim
x→∞

F ∗n(x)
F (x)

= n. (2)

It can be shown that if the condition holds for

some n ≥ 2, then it holds for all n ≥ 2.

Here, F ∗n denotes the n-fold convolution of

F , F ∗2(x) =
∫ x
0 F (x − y)dF (y) and so on, with

corresponding tail F ∗n(x) = 1 − F ∗n(x).
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In terms of r.v.s., (2) can thus be re-stated as

P (X1 + · · · + Xn > x) ∼ nP (X > x),

and can equivalently and most importantly be

stated as

P (X1+· · ·+Xn > x) ∼ P (max{X1, . . . , Xn} > x),

(3)

for all n ≥ 2 where X1, . . . , Xn are i.i.d. dis-

tributed as F . In words (3) means that

the sum is likely to get large because one of

the r.v.s. gets large.

It is this interpretation that justifies using subex-

ponential distributions in stochastic modeling

of stochastic networks.
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Two important properties of S are contained
in

Proposition 1 (a) If F ∈ S and G is any d.f.
such that

G(x) ∼ cF (x), with constant c > 0, (4)

then G ∈ S and F ∗ G ∈ S and F ∗ G(x) ∼
(1 + c)F (x).

(b) If F ∈ S and G is any d.f. such that

G(x)/F (x) → 0, (5)

then F ∗ G ∈ S and F ∗ G(x) ∼ F (x).

Two d.f.s F and G (or r.v.s. X and Y ) satisfy-
ing (4) are said to be tail equivalent, whereas
if they satisfy (5) we say that F has a heav-
ier (or fatter) tail than G (equivalently, we say
that G has a lighter tail than F ). Note that
(5) holds, in particular, for any subexponential
F and any light-tailed G.

8



For technical reasons we sometimes restrict

the class S even further to the class S∗ ⊂ S,

introduced by Klüppelberg and defined by

Definition 2 (The class S∗) Let F be a d.f.

on [0,∞) such that F (x) > 0, x ≥ 0. We say

that F ∈ S∗ if F has finite first moment 1/µ

and

lim
x→∞µ

∫ x

0

F (x − y)

F (x)
F (y)dy = 2. (6)

S∗ includes (when the mean is finite) all the ex-

amples we mentioned for S; so for all practicle

purposes, we can (and sometimes do) assume

that we are dealing with distributions in S∗. An

important property of S∗ is that if F ∈ S∗, then

not only is F subexponential, but so is Fe (the

equilibriuim distribution (integrated tail df) of

F ).
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Single-server delay asymptotics

Interarrival times {Tn} are i.i.d. distributed as

A(x) = P (T ≤ x) with finite non-zero mean

E(T ) = 1/λ, and independently service times

{Sn} are i.i.d. distributed as F (x) = P (S ≤ x)

with finite non-zero mean E(S) = 1/µ. ρ
def
=

λ/µ < 1 (stability). The delay of the nth cus-

tomer (in queue, not including service) is de-

noted by Dn and satisfies the recursion

Dn+1 = (Dn + Sn − Tn)+, n ≥ 0. (7)

D denotes steady-state delay: P (D ≤ x) =

limn→∞ P (Dn ≤ x).
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D has the same distribution as the maximum

of the negative drift random walk Rn, n ≥ 0,

where

Rn =
n∑

j=1

(Sj − Tj), n ≥ 1, R0 = 0; (8)

D
D
= max

n≥0
Rn. (9)

(X
D
= Y denotes that X and Y have the same

distribution.)

11



For any non-negative random variable X with

distribution F and finite mean 1/µ, the equi-

librium distribution Fe (or integrated tail distri-

bution) is defined by

Fe(x) = µ
∫ x

0
F (y)dy , x > 0 . (10)

It arises naturally as the distribution of the sta-

tionary forward recurrence time in point pro-

cesses, the stationary remaining service time

distribution in queues, and is intimately re-

lated to the inspection paradox. By differenti-

ating (10) we see that Fe always has a density

fe(x)
def
= µF (x) on (0,∞).

We let Xe denote a r.v. distributed as Fe, which

in the context of service times will be denoted

by Se.
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Lemma 1 (a) If F ∈ L, then Fe ∈ L and Fe is

heavier than F ;

lim
x→∞

F (x)

Fe(x)
= 0. (11)

(b) If Fe ∈ L, then Fe is heavier than F ; (11)

holds.

Summarizing: If either F or Fe is heavy-tailed,

then Fe has a fatter tail than F . In particular,

if Fe ∈ S then Fe has a fatter tail than F and

we conclude that P (Xe + X > x) ∼ P (Xe > x)

when X and Xe are independent (recall Propo-

sition 1 (b)).
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The following shows how fundamental S is in

the context of queues (A. Pakes (1975)):

Theorem 1 For the stable FIFO GI/GI/1 queue

(a) If Se is subexponential, then

P (D > x) ∼ ρ

1 − ρ
P (Se > x). (12)

(In particular, D is subexponential since it

is tail equivalent to Se.)

(b) If the arrival process is Poisson, then D is

subexponential if and only if Se is subexpo-

nential if and only if (12) holds.
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The proof of (b) is rather easy, following from

the classic Pollaczek-Khinchine formula for M/G/1

which expresses D as an independent geomet-

ric sum of i.i.d. r.v.s. (ladder heights of the

underlying random walk) distributed as Se:

D =
N∑

j=1

Yj,

where Yj are iid
d∼ Se and P (N = n) = (1 −

ρ)ρn, n ≥ 0. Noting that E(N) = ρ
1−ρ, the

proof merely requires justifying that the defin-

ing subexponential property (2) can be extended

to random summands N , with E(N) replac-

ing N (which indeed is true when N has finite

MGF).

The proof of (a) is much harder, requiring fur-

ther deeper results on ladder heights of random

walks and more subtle properties of subexpo-

nential distributions.
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The key point is that D still has a geometric

sum representation as

D =
N∑

j=1

Yj,

but now Yj are iid with a complex general lad-

der height distribution (not Fe) and P (N =

n) = (1 − θ)θn where θ (the probability of at

least one ladder height) is not explicitely known

(e.g., it is not ρ anymore). The proof then

consists of proving that

P (Y > x) ∼ cP (Se > x), where cE(N) = ρ
1−ρ.
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Sojourn time W = D+S is easily handled now:

when Fe ∈ S we now know that D ∈ S is tail

equivalent to Se and that S has a lighter tail

than Se; hence P (W > x) ∼ P (D > x). Simi-

larly, workload V can be handled since

P (V > x) = ρP (D + Se > x) holds for any

GI/GI/1 queue. Thus when Fe ∈ S,

P (V > x) ∼ ρ( ρ
1−ρ + 1)P (Se > x) = ρ

1−ρP (Se >

x).

Summarizing: when Fe ∈ S, all three quanti-

ties V , W , D have the same tail asymptotic;
ρ

1−ρP (Se > x), x → ∞.
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Tandem queues and beyond

The single-server asymptotics for delay extend

in a variety of ways to single-class networks,

the general rule being that the sojourn time

tail is equivalent to the heaviest service time

tail. For example, consider a stable tandem

queue with 2 nodes, service time dfs F1 and

F2 both in S∗ but with F1 lighter than F2.

Then sojourn time W has the following tail

asymptotic: P (W > x) ∼ ρ2
1−ρ2

P (Se(2) > x).

(ρ2 = λE(S(2)).)

For the FIFO GI/GI/c queue, the tail asymp-

totics are not fully worked out. The complica-

tion arises due to the fact that in this case, the

df of the tail depends on the value of ρ. For

example, if c = 2 and ρ < 1, then E(D) < ∞ if

E(S3/2) < ∞, but if 1 < ρ < 2, then E(D) = ∞
unless E(S2) < ∞.
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Queue length is different: importance of e
√

x

For the single-server queue, it is now known

that the heavy-tailed asymptotic for queue length

P (L > k), is not as simple as for delay; it de-

pends on how heavy the service time tail is.

From distributional Little’s law,

L
d∼ N(W ),

({N(t) : t ≥ 0} is a time-stationary version of

the renewal arrival process and W is an inde-

pendent copy of sojourn time).

Thus one might expect that when Fe ∈ S,

P (L > k) ∼ P (λW > x) because N(t) should

only enter through its mean behavior. This

turns out to be true only if Fe has a tail that

is heavier than the Weibull tail e
√

x.
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Because of this, we say that a distribution is

moderately heavy-tailed if it is heavy-tailed but

lighter than (or same as) e
√

x. This would in-

clude for example Weibull tails such as F (x) =

e−λxα
, when 0.5 < α < 1, but not the lognor-

mal. (Tail asymptotics are known for L when

Fe is moderately heavy-tailed but the form is

very complicated.)

This area of research led to the notion of inde-

pendent sampling of a process (such as a Pois-

son counting process N(t)) at a random time

T ; N(T ), and figuring out what the tail asymp-

totics of N(T ) are when T is heavy-tailed.
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e
√

x arises elsewhere too: Busy periods

In 1980 it was shown that the busy period B

for the M/G/1 queue had a tail like P (B > x) ∼
(1 − ρ)−1P (S > (1 − ρ)x), when S is regularly

varying. (Note how it is not Se that is here,

only S itself.)

In 1999 it was observed that this asymptotic

could not hold if S was moderatey heavy-tailed.

Since then, there has been progress in proving

that the asymptotic does hold when S is subex-

ponential and heavier than e
√

x. Extensions to

GI/GI/1 also exist.
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Interestingly, for the M/G/1, a busy period in

which the first service time is deterministic of

length x, has reprentation

B(x) = x +
N(x)∑
i=1

Bi,

where the Bi are iid copies of B. Thus {B(x) :

x ≥ 0} forms a compound Poisson process in

which B has the same distribution as B(S) with

S chosen independently. One would expect

this fact to be useful in proving tail asymp-

totics for B, via “independent sampling” but a

proof along these lines has eluded us.
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e
√

x arises again: Processor sharing

Recently there has been results showing that
if S is suitably heavy tailed, then the sojourn
time W for a M/G/1 queue under processor
sharing (PS) is of the nice form

P (W > x) ∼ P (S > (1 − ρ)x).

Once again it turns out that S must have a
heavier tail than e

√
x in order that this asymp-

totic holds.

One way to gain some intuition as to how such
an asymptotic would arise:

It is well known that the expected stationary
sojourn time for a customer with a service time
of length x is given by (1−ρ)−1x and in general
E(W ) = (1 − ρ)−1E(S).

Finally, we point out that the e
√

x is key to
so-called “reduced load equivalence” results in
fluid queues.
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Multi-class networks: a mess

Suffice to say that in a multi-class setting,

there are no general results. The problem is

that even stability is a serious issue: The in-

tuitive ρi < 1 conditions while necessary for

stability are no longer sufficient. In one exam-

ple, it appears that by making a given distribu-

tion (path length) heavier, the system becomes

more stable! So it is possible that the stabil-

ity region of a model can even depend upon

component distributions.

This is a huge open area of research.
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