
Stochastic Networks

A “system” such as a supermarket or a bank
involves “customers” who arrive randomly over
time and require service of random durations.
Competition for service among the customers
causes delays and customers typically must wait
in queues (lines) before receiving service. In-
side the system there may be only one service
facility, yielding a single-server queue, or many
facilities, yielding a complex queueing network
in which customers move around among the
facilities before departing. Service disciplines
other than first-in-first-out (FIFO) might be
employed such as last-in-first-out (LIFO), pre-
emptive LIFO (P-LIFO), shortest-job-next (SJN),
or processor sharing (PS). More generally, for
the purpose of minimizing congestion or max-
imizing revenue, various control policies might
be derived and then employed by the system,
regulating both the arrival streams and servic-
ing facilities. (Stochastic control theory)
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Customers might really represent people or, in

telecommunication models for example, might

denote signals (requests to a WEB server) or

travelling packets of information, or jobs sent

to a printer. Arriving customers might also

be partitioned apriori and along the way into

classes and given different priorities for servic-

ing; this yields multi-class models. In some

situations, arrivals might even be turned away

due to limited capacity or a finite waiting area;

this yields loss models.
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Customers C0, C1, C2, . . . arrive to the system
at random times t0 < t1 < t2 < · · ·, require
service of random durations, then depart at
random times td0, td1, td2, . . . (not necessarily in
the same order as arrival). The total amount
of time spent in the system by Cn is defined
by Wn = tdn − tn and is called the sojourn time.
Letting N(t) denote the number of customer
arrivals during the time interval (0, t],

L(t) =
N(t)∑
n=0

I{tdn > t},

denotes the total number of customers in the
system at time t (I{A} denoting the indicator
function for the event A, equal to 1 if A occurs,
0 if not)

The evolution of the system “state” over time
is described by a stochastic process {X(t) :
t ≥ 0} taking values in a general space, and
it is usually of interest to also consider the
embedded discrete-time process {X(tn−) : n ≥
0} where X(tn−) is the state as found upon
arrival by Cn.
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A famous law in queueing theory is Little’s law,

l = λw,

where

l = lim
t→∞

1

t

∫ t

0
L(s)ds (average number in system)

w = lim
n→∞

1

n

n∑
j=0

Wj (average sojourn time)

λ = lim
t→∞

N(t)

t
(average arrival rate).

These long-run averages are defined (when they

exist) almost surely along sample paths, and

can also be expressed as expected values with

respect to stationary distributions.

Whenever both λ and w exist and are finite, l

exists and l = λw.
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Congestion in a FIFO single-server queue

Cn arrives at time tn, brings a service time Sn

(denoting the length of time required of the

server), and waits in the queue if the server

is busy. The delay of Cn (time spent waiting

in the queue (line) before entering service) is

denoted by Dn and satisfies the recursion

Dn+1 = (Dn + Sn − Tn)+, n ≥ 0, (1)

where Tn = tn+1 − tn denotes the nth interar-

rival time, and a+ = max{a,0} is the positive

part of a.

Sojourn time: Wn = Dn + Sn

The delay and sojourn time processes

{Dn : n ≥ 0}, {Wn : n ≥ 0} measure congestion

from the customers’ point of view.
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By imagining that service times represent work

for the server and that the server processes the

work at rate 1 unit per unit time, we can con-

struct the workload

V (t) = the sum of all remaining service times

(whole or partial) in the system at time t. Un-

der FIFO, Dn is the work found by Cn; Dn =

V (tn−). Workload can also represent the amount

of water in a reservoir in which at time tn, the

amount Sn of water is added to the reservoir,

meanwhile water is drained out at constant

rate 1 whenever the reservoir is not empty.

The worload process {V (t) : t ≥ 0} measures

congestion over time from the system’s point

of view.
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Of intrinsic interest is studying steady-state
(limiting as time tends to ∞) quantities such
as

P (D > x) = lim
n→∞P (Dn > x),

where P (Dn > x), x ≥ 0 denotes the probability
that the delay Dn exceeds x units of time.

Similarly

P (V > x) = lim
t→∞

P (V (t) > x), x ≥ 0

P (L > k) = lim
t→∞

P (L(t) > k), k ≥ 0

P (W > x) = lim
n→∞P (Wn > x), x ≥ 0.

(Then, l = E(L) =
∑∞

k=0 P (L > k), w = E(W ) =∫∞
0 P (W > x)dx; l and w are expected values.)

If we randomly choose a customer Cn way out
in the future, then this customer’s delay Dn is
distributed as D. If we randomly choose a time
t way out in the future, then workload V (t) at
this time is distributed as V .
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Classical Stochastic Assumptions: Exponential

Arrival times {tn : n ≥ 0} form a Poisson pro-

cess at rate λ (equaivalently, the interarrival-

time sequence {Tn} is independent and identi-

cally distributed (iid) with an exponential dis-

tribution: A(x) = P (Tn ≤ x) = 1 − e−λx, x ≥
0), and, independently, the service times at a

given node {Sn} are iid with an exponential

distribution at rate µ; G(x) = P (S ≤ x) =

1 − e−µx, x ≥ 0.

E(T ) = 1/λ, E(S) = 1/µ, and ρ
def
= λ/µ.

ρ represents the long-run rate at which work

arrives to the system.
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In the single-server case, this is called the M/M/1

queue. When ρ < 1 (stability), then {L(t)}
forms a positive-recurrent continuous-time Markov

chain, and

P (L ≥ k) = ρk, k ≥ 0,

and

P (D > x) = ρeµ(1−ρ)x, x ≥ 0.

Also, V has the same distribution as D via Pois-

son arrivals see time averages (PASTA);

P (V > x) = ρeµ(1−ρ)x, x ≥ 0.

L has a geometric tail and both Dand V have

an exponential tail.

(W = D + S and so P (W > x) = eµ(1−ρ)x, x ≥
0, sojourn time is exactly exponential.)
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More generally, consider a network with J ≥ 2
nodes in which customers completing service
at node i, independent of the past next join the
queue at node j with probability Pi,j (Marko-
vian routing), and service times at node i are
iid exponential with rate µi, and arrivals (from
the outside) to node i are Poisson with rate λi.
(Pi,0 = probability of departing the system.)
P (Li > k) = limt→∞ P (Li(t) > k), steady-state
number of customers at node i.

Total arrival rates Λi (to each node i) can be
computed via solving

Λi = λi +
J∑

j=1

ΛjPj,i,

and if ρi
def
= Λi/µi < 1, i = 1, . . . , J, (stability)

then

P (L1 ≥ k1, L2 ≥ k2, . . . , LJ ≥ kJ) = ρ
k1
1 ρ

k2
2 · · · ρkJ

J ,

product form geometric steady-state distribu-
tion for Jackson Networks.
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Classical Stochastic Assumptions: iid finite MGF

Here , arrival times {tn : n ≥ 0} form a renewal
process at rate λ, that is, the interarrival-time
sequence {Tn} is independent and identically
distributed (iid) with a general distribution: A(x) =
P (Tn ≤ x). Independently, the service times at
a given node {Sn} are iid with a general distri-
bution: G(x) = P (S ≤ x). But S is assumed
to have a finite MGF: for all ε > 0 sufficiently
small

E(eεS) =
∫ ∞

0
eεxdG(x) < ∞.

This condition ensures that the tail of S is ap-
proximately exponential (or better yet, S might
be bounded; e.g. P (S ≤ b) = 1 for some b):

P (S > x) ≤ ce−εx, x ≥ 0,

where c = E(eεS). (Chebychev’s inequality)
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We refer to such an S as being light-tailed be-

cause P (S > x) tends to 0 fast, at worst like

an exponential.

System performance it turns out is also light-

tailed whenever S is. For the FIFO single-

server queue, for example, it can be shown that

E(eεD) < ∞ and

P (D > x) ≤ ceεx, x ≥ 0;

D has a tail that is bounded by an exponential

tail whenever S is light-tailed.

Similarly there exists a b > 0 and 0 < c < 1

such that

P (L > k) ≤ bak, k ≥ 0;

L has a tail that is bounded by a geometric tail

whenever S is light-tailed.
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With some further regularity conditions enforced,

these approximations can be made asymptoti-

cally exact:

P (D > x) ∼ ceεx, x → ∞
P (L > k) ∼ bak, k → ∞.

(Large deviations theory, Cramér-Lundberg ap-

proximation, etc.)

where a(x) ∼ b(x) means that a(x)/b(x) → 1

as x → ∞.

Finally: Even in complex single-class networks

with J ≥ 2 nodes, system performance such as

W is light-tailed whenever all service times are

so.

13


