
Heavy-tailed distributions

References

[1] V.P. Chistyakov (1964). A theorem on sums of independent, positive random variables and
its applications to branching processes. Theory Probab. Appl. 9, 640–648.
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[3] P. R. Jelenković and P. Momcilovic, (2002). Large deviation analysis of subexponential
waiting times in a processor sharing queue. Math. Opns. Res. (to appear)

[4] A. de Meyer and J.L.T. Teugels (1980). On the asymptotic behaviour of the distributions
of the busy period and service time in M/G/1. J. Appl. Probab. 17, 820–813.

[5] R. Nunez-Queija (2000) Processor sharing models for integrated service networks. (Ph.D.
dissertation, Eindhoven University of Technology)

[6] A.P. Zwart and O.J. Boxma (2000) Sojourn time asymptotics in the M/G/1 processor
sharing queue. Syst. Theory Appl. 35, 141–166.

[7] A.P. Zwart (2001) Tail asymptotics for the busy period in the GI/GI/1 queue. Math. Opns.
Res. 26, 485–493.

Fluid queues

References

[1] R. Agrawal, A.M. Makowski and P. Nain (1999). On a reduced load equivalence for fluid
queues under subexponentiality. QUESTA, 33, 5–42.
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[3] P. R. Jelenković and P. Momcilovic, (2002). Asymptotic loss probability in a finite buffer
fluid queue with heterogeneous heavy-tailed on-off processes. Annals Appl. Probab. (to
appear)
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