Lecture 1 : fair division of indivisible units

Division according to claims

e N = {i} agents

e N = 4{0,1,2,...};t € N : resources; z; € N :
agent ¢'s claim

ot < Y n x;, = xN : rationing, urn emptying,
scheduling

e t <> n x; : surplus sharing, urn filling



e (N,t,x) : rationing problem

e Y = (Y;);en : random variable s.t. Y;(w) € R,
0<Y, < >XnY;=1

e (N,t,x) —» r(N,t,z) =Y : rationing method



e duality: r —7* :r*(t,z) = x — r(xy — t, x)

e distribution of the first unit:p;(z) = proba{r(1l,x) =

e'},

e of the first unit of tax: 7;(x) = proba{r(zy —
l,x) =z — €'}

Examples of rationing methods

e priority prio? : o = fixed ordering of N, (7%)* =

7T0'

e random priority 7rp : rp(t,x) = prio?(t,x) where
o is uniformly distributed over all orderings of IV,
rpt =Tp

Ly

e proportional pro: p;(x) = 17;(x) = ) iterate;

pro* = pro



m(z) ={t € N | x; >0}, M(zx) = {¢ € N |
a;i:maxja:j};

fair queuing  fq : p(x) uniform on m(z); 7(x)
uniform on M(x); iterate on 7

fair queuing® fq* : p(z) uniform on M (x), 7(x)
uniform on m(x); iterate on p

equal chances ec : p(x) uniform on m(x), iterate

equal chances*ec* : 7(x) uniform on m(x), iter-
ate



mild properties:

e Demand Monotonicity DM : z/ = = + ¢! =
r;(t, z') stochastically dominates 7;(t, z)

e Demand Monotonicity* DM* : 2/ = z + ¢! —
x, —r;(t, «) stochastically dominates z; —r;(t, )

basic equity property

e Equal Treatment ExAnte ETFEA: z; = v; —
ri(t, ) and r;(t, z) identically distributed

All methods above meet DM, DM*
All except priority meet ET E

It is always interesting to drop the ET'E property



axioms with much bite

Two dual markovian properties: UC* = LC

e Upper Composition UC : t < t/ < any =
r(t,z) = r(t,r(t',x)); equivalently: r(¢,z) ob-
tains by iteration of 7(x)

e Lower Composition LC : 0 < t/ < t < z)y =
r(t,z) =r(t',z) +r(t —t',z — r(t', x)); equiva-
lently: 7(t¢,x) obtains by iteration of p(x)
examples

e priority, proportional: LC and UC

e fair queuing, equal chances*: UC, not LC

e fair queuing™, equal chances: LC, not UC

e random priority: neither LC nor UC



A variable population property

e Consistency CSY : fix (N,t,x) and write Y}, =
ri(N,t,x);then Y; = ri(N\j, t — Y}, z_5)

Note: CSY = (CSY™

Examples

e priority, proportional, fair queuing, fair queuing*:
YES

e random priority, equal chances, equal chances*:

NO



An incentive-compatibility property

/.
2!
then r;(t, (x;, z_;)) stochastically dominates

Projo z,;17i(t, (x5, ;)

e Strategyproofness SP : fix ¢,z_; and xz;,x

Note: SP = DM (take z} < ;)

Examples

e priority, random priority, fair queuing, equal chances:
YES

e proportional, fair queuing™, equal chances™: NO



Characterization results

e UC+ LC + ETE <— UC+ self dual <= pro-
portional

e the UC + LC' family consists of interesting vari-
ants of the proportional method

o UC + LC + CSY <= priority composition of
proportional methods (US bankruptcy law)

Equal Treatment Ex Post ETEP : x; = x; —>|
Yi(w) — Yj(w) [<1

o UCH+DM*+ ETEA+ ETEP < fair queuing

o LC+DM+ ETEA+ ETEP <= fair queuing™



e Standard of loss: an ordering =~ (complete, tran-
sitive) of N x N such that a2} > z; = (4,z})

(7:7 :CZ)

e Standard of loss method: an UC method such
that (¢, x;) > (j4,zj) = 7j(z) =0

If the standard is a strict ordering, this defines a de-
terministic method

o UC+CSY +DM*+ deterministic < standard
of loss

e UC + CSY + DM* <= probabilistic standard
of loss

e example: UC+CSY+DM*+ETFEA <" mix-
tures” of fair queuing and proportional



e the dual notion of standards of gain allows a dual
description of the family LC + CSY + DM



LC + SP <= fixed chances; in particular LC +
SP + ETEA < equal chances

UC+ SP + ETFEA < fair queuing

UC + SP <= "quasi deterministic” standard of
loss methods

CSY +SP «<— 77

S P+ self-dual <= random priority ( conjecture)



Lecture 2 :Cost and benefit sharing

e agents N, agent ¢ demands x; = 0,1, 2, ...

e cost function C : NNV — R, non decreasing,

C(0) =0

e cost sharing method: ¢ : (N,C,z) — y =
SO(Na Ca 33‘) S RN: ZZ Yi = C(x)

e special case x = (1, ...,1) is classical cooperative
game framework.



e Additivity axiom: ¢(C! + C?,z) = ¢(Ct,z) +
p(C?,x)

e shared flow on [0,z] : f(z — €, 2) a unit flow on
[0, z] from O to = ; s(2 — el, z) is agent i's share,
s; > 0, ZZ si =1

e associate to (f, s) an additive method :¢p(C, x) =
ZzE]O,x] Zi:zi>0 820(2) ) f(Z - 627 Z) ) S(Z - 627 Z)

e Theorem: every additive cost sharing method ¢(x)
is represented ( in at least one way) by a shared
flow on [0, z]



Examples of additive cost sharing methods

e fixed shares: p(C,x) = C(x) - s, where s is a
fixed vector of shares.

e simple proportional: ¢,(C,x) = C(z) - inx.
j%j

e incremental: fix an ordering of N say {1,2,..}
901(07 w) — 0(331,0),@2(0, w) — C($1,$2,0) T
C(x1,0),93(C,x) = C(x1, x2,23,0)—C(x1, z2,0), ...

e cross-subsidizing serial: say N = {1,2,3} and
r1 < xo < x3, then

01(C, ) = 10(x1, 21, 1); 92(C, ) = 1(C, )+
%(C(w1> xo,x2)—C(x1,21,21)); 3(C, ) = 0o(C, x)+
C(z) — C(z1, 72, 72)



Responsibility in idiosyncratic demand: normative and
incentive justification.

e Dummy axiom: for any 7 ,{09;C(z) = 0 for all
ze NV} = ,(C,z) =0

e Non Dummy axiom: for any ¢ ,{C(z) = c(z;) for
all ze NV} = ,(C, ) = c(2;)

e Lemma: {Additivity + Dummy}<—=-{Additivity
+ Non Dummy}

The Dummy axiom eliminates the fixed shares, simple
proportional, and cross subsidizing serial methods.



Representation of Additive + Dummy methods

a unit flow f from 0 to x defines a simple shared
flow by s(z — €%, z) = €.

we associate to flow f the probabilistic rationing
method where proba{r(t,z) = z} is the in-flow
at z.

we associate to flow f a cost sharing method

p;(Crz) = ZzE]O,w],zi>O 0;,C(z) - f(z — eiaz)-

Dummy holds true.

Theorem : every additive c.s. method (x) meet-
ing Dummy is represented uniquely by a unit flow

I3

Thus the Additive and Dummy methods are in one-
to-one correspondence with the subset of rationing
methods constructed by flows.



Examples

e priority rationing «— incremental cost sharing

e random priority rationing «— Shapley-Shubik cost
sharing : uniform average of all incremental meth-
ods < Shapley value of the stand alone game

v(S) = C(x(5),0(N \ 5))

e proportional rationing <—— Aumann-Shapley cost
sharing : uniform average over all paths from 0
to x.

Note that Aumann Shapley and simple proportional
coincide when outputs are perfect substitute: C(z) =

c(>25 ;)

e fair queuing <«—— subsidy-free serial cost sharing



The cost sharing methods corresponding to fair queu-
ing®, equal chances rationing, equal chances*, are
easy to define but have not emerged in the literature.



Characterization results: not as developed as one may

want.

e Ordinality axiom: foralli € N, z; € N,{0,C(z;,2_;) =
0 for all z_;} = {we can merge z; and z; — 1}

Theorem: Additivity + Dummy + Ordinality <—
{convex combinations of incremental methods}.

Corollary: add Equat Treatment of Equals to pick the
Shapley-Shubik method.

The Aumann Shapley method is characterized by Ad-
ditivity, Dummy, and 2 additional properties:

e Simple proportional for perfect substitutes

e The corresponding rationing method meets Upper

Composition



Limits of the additive approach

e Demand Monotonicity axiom: for all 2 , C' and «,
%i(C,z) >0

Note that the Aumann-Shapley method fails Demand
Monotonicity !

e Theorem: if an additive method meets Dummy
and Demand Monotonicity, it can’t be simple pro-
portional for perfect substitute outputs.



Strengthening Demand Monotonicity

e Group Demand Monotonicity: for all 7, S,C and
w,iESS%(C,w)ZO

e Solidarity : for all 7,7,k all distinct, all C,«,
Wi(C, ) - P2E(C ) > 0

Theorem: Additivity + Dummy + { Group Demand
Monotonicity or Solidarity}= ()



Generalized proportional methods :

o(C,x) = % - C(x), where f; is nondecreasing

and positive.

e Theorem: The generalized proportional methods
meet Group Demand Monotonicity and Solidar-
ity. They are characterized by the combination
{Additivity + Demand Monotonicity + Solidar-

ity }.



