Lecture 1: fair division of indivisible units

Division according to claims

- $N=\{i\}$ agents
- $\mathbb{N}=\{0,1,2, \ldots\} ; t \in \mathbb{N}:$ resources; $x_{i} \in \mathbb{N}$: agent i 's claim
- $t \leq \sum_{N} x_{i}=x_{N}$: rationing, urn emptying, scheduling
- $t<\sum_{N} x_{i}$: surplus sharing, urn filling
- ($N, t, x)$: rationing problem
- $Y=\left(Y_{i}\right)_{i \in N}:$ random variable s.t. $Y_{i}(\varpi) \in \mathbb{R}$, $0 \leq Y_{i} \leq x_{i}, \sum_{N} Y_{i}=t$
- $(N, t, x) \rightarrow r(N, t, x)=Y$: rationing method
- duality: $r \rightarrow r^{*}: r^{*}(t, x)=x-r\left(x_{N}-t, x\right)$
- distribution of the first unit: $\rho_{i}(x)=\operatorname{proba}\{r(1, x)=$ $\left.e^{i}\right\}$,
- of the first unit of tax: $\tau_{i}(x)=\operatorname{proba}\left\{r\left(x_{N}-\right.\right.$ $\left.1, x)=x-e^{i}\right\}$

Examples of rationing methods

- priority prio ${ }^{\sigma}$: $\sigma=$ fixed ordering of $N,\left(\pi^{\sigma}\right)^{*}=$ $\pi^{\sigma^{*}}$
- random priority $r p: r p(t, x)=\operatorname{prio}^{\sigma}(t, x)$ where σ is uniformly distributed over all orderings of N, $r p^{*}=r p$
- proportional pro: $\rho_{i}(x)=\tau_{i}(x)=\frac{x_{i}}{x_{N}}$, iterate; pro* $=$ pro
- $m(x)=\left\{i \in N \mid x_{i}>0\right\}, M(x)=\{i \in N \mid$ $\left.x_{i}=\max _{j} x_{j}\right\}$;
- fair queuing $\quad f q: \rho(x)$ uniform on $m(x) ; \tau(x)$ uniform on $M(x)$; iterate on τ
- fair queuing* $f q^{*}: \rho(x)$ uniform on $M(x), \tau(x)$ uniform on $m(x)$; iterate on ρ
- equal chances $e c: \rho(x)$ uniform on $m(x)$, iterate
- equal chances*ec ${ }^{*}: \tau(x)$ uniform on $m(x)$, iterate
mild properties:
- Demand Monotonicity $D M: x^{\prime}=x+e^{i} \Longrightarrow$ $r_{i}\left(t, x^{\prime}\right)$ stochastically dominates $r_{i}(t, x)$
- Demand Monotonicity* $D M^{*}: x^{\prime}=x+e^{i} \Longrightarrow$ $x_{i}^{\prime}-r_{i}\left(t, x^{\prime}\right)$ stochastically dominates $x_{i}-r_{i}(t, x)$
basic equity property
- Equal Treatment ExAnte ETEA: $x_{i}=x_{j} \Longrightarrow$ $r_{i}(t, x)$ and $r_{j}(t, x)$ identically distributed

All methods above meet $D M, D M^{*}$

All except priority meet $E T E$

It is always interesting to drop the $E T E$ property
axioms with much bite

Two dual markovian properties: $U C^{*}=L C$

- Upper Composition $U C$: $t<t^{\prime} \leq x_{N} \Longrightarrow$ $r(t, x)=r\left(t, r\left(t^{\prime}, x\right)\right)$; equivalently: $r(t, x)$ obtains by iteration of $\tau(x)$
- Lower Composition $L C: 0 \leq t^{\prime}<t \leq x_{N} \Longrightarrow$ $r(t, x)=r\left(t^{\prime}, x\right)+r\left(t-t^{\prime}, x-r\left(t^{\prime}, x\right)\right)$; equivalently: $r(t, x)$ obtains by iteration of $\rho(x)$ examples
- priority, proportional: $L C$ and $U C$
- fair queuing, equal chances*: $U C$, not $L C$
- fair queuing*, equal chances: $L C$, not $U C$
- random priority: neither $L C$ nor $U C$

A variable population property

- Consistency CSY : fix (N, t, x) and write $Y_{k}=$ $r_{k}(N, t, x)$;then $Y_{i}=r_{i}\left(N \backslash j, t-Y_{j}, x_{-j}\right)$

Note: $C S Y=C S Y^{*}$

Examples

- priority, proportional, fair queuing, fair queuing*: YES
- random priority, equal chances, equal chances*: NO

An incentive-compatibility property

- Strategyproofness $S P:$ fix i, x_{-i} and x_{i}, x_{i}^{\prime}; then $r_{i}\left(t,\left(x_{i}, x_{-i}\right)\right)$ stochastically dominates $\operatorname{proj}_{\left[0, x_{i}\right]} r_{i}\left(t,\left(x_{i}^{\prime}, x_{-i}\right)\right)$

Note: $S P \Longrightarrow D M \quad\left(\right.$ take $\left.x_{i}^{\prime} \leq x_{i}\right)$

Examples

- priority, random priority, fair queuing, equal chances: YES
- proportional, fair queuing*, equal chances*: NO

Characterization results

- $U C+L C+E T E \Longleftrightarrow U C+$ self dual \Longleftrightarrow proportional
- the $U C+L C$ family consists of interesting variants of the proportional method
- $U C+L C+C S Y \Longleftrightarrow$ priority composition of proportional methods (US bankruptcy law)

Equal Treatment Ex Post ETEP : $x_{i}=x_{j} \Longrightarrow \mid$ $Y_{i}(w)-Y_{j}(w) \mid \leq 1$

- $U C+D M^{*}+E T E A+E T E P \Longleftrightarrow$ fair queuing
- $L C+D M+E T E A+E T E P \Longleftrightarrow$ fair queuing*
- Standard of loss: an ordering \succsim (complete, transitive) of $N \times \mathbb{N}$ such that $x_{i}^{\prime} \geq x_{i} \Longrightarrow\left(i, x_{i}^{\prime}\right) \succsim$ $\left(i, x_{i}\right)$
- Standard of loss method: an $U C$ method such that $\left(i, x_{i}\right) \succ\left(j, x_{j}\right) \Longrightarrow \tau_{j}(x)=0$

If the standard is a strict ordering, this defines a deterministic method

- $U C+C S Y+D M^{*}+$ deterministic \Longleftrightarrow standard of loss
- $U C+C S Y+D M^{*} \Longleftrightarrow$ probabilistic standard of loss
- example: $U C+C S Y+D M^{*}+E T E A \Longleftrightarrow$ "mixtures" of fair queuing and proportional
- the dual notion of standards of gain allows a dual description of the family $L C+C S Y+D M$
- $L C+S P \Longleftrightarrow$ fixed chances; in particular $L C+$ $S P+E T E A \Longleftrightarrow$ equal chances
- $U C+S P+E T E A \Longleftrightarrow$ fair queuing
- $U C+S P \Longleftrightarrow$ "quasi deterministic" standard of loss methods
- $C S Y+S P \Longleftrightarrow$??
- $S P+$ self-dual \Longleftrightarrow random priority (conjecture)

Lecture 2 :Cost and benefit sharing

- agents N, agent i demands $x_{i}=0,1,2, \ldots$
- cost function $C: N^{N} \longrightarrow R_{+}$, non decreasing, $C(0)=0$
- cost sharing method: $\varphi:(N, C, x) \longrightarrow y=$ $\varphi(N, C, x) \in \mathbb{R}_{+}^{N}, \sum_{i} y_{i}=C(x)$
- special case $x=(1, \ldots, 1)$ is classical cooperative game framework.
- Additivity axiom: $\varphi\left(C^{1}+C^{2}, x\right)=\varphi\left(C^{1}, x\right)+$ $\varphi\left(C^{2}, x\right)$
- shared flow on $[0, x]: f\left(z-e^{i}, z\right)$ a unit flow on [$0, x$] from 0 to $x ; s_{j}\left(z-e^{i}, z\right)$ is agent i's share, $s_{i} \geq 0, \sum_{i} s_{i}=1$
- associate to (f, s) an additive method $: \varphi(C, x)=$ $\sum_{z \in] 0, x]} \sum_{i: z_{i}>0} \partial_{i} C(z) \cdot f\left(z-e^{i}, z\right) \cdot s\left(z-e^{i}, z\right)$
- Theorem: every additive cost sharing method $\varphi(x)$ is represented (in at least one way) by a shared flow on $[0, x]$

Examples of additive cost sharing methods

- fixed shares: $\varphi(C, x)=C(x) \cdot s$, where s is a fixed vector of shares.
- simple proportional: $\varphi_{i}(C, x)=C(x) \cdot \frac{x_{i}}{\sum_{j} x_{j}}$
- incremental: fix an ordering of N say $\{1,2, .$. $\varphi_{1}(C, x)=C\left(x_{1}, 0\right), \varphi_{2}(C, x)=C\left(x_{1}, x_{2}, 0\right)-$ $C\left(x_{1}, 0\right), \varphi_{3}(C, x)=C\left(x_{1}, x_{2}, x_{3}, 0\right)-C\left(x_{1}, x_{2}, 0\right), \ldots$
- cross-subsidizing serial: say $N=\{1,2,3\}$ and $x_{1} \leq x_{2} \leq x_{3}$, then
$\varphi_{1}(C, x)=\frac{1}{3} C\left(x_{1}, x_{1}, x_{1}\right) ; \varphi_{2}(C, x)=\varphi_{1}(C, x)+$ $\frac{1}{2}\left(C\left(x_{1}, x_{2}, x_{2}\right)-C\left(x_{1}, x_{1}, x_{1}\right)\right) ; \varphi_{3}(C, x)=\varphi_{2}(C, x)+$ $C(x)-C\left(x_{1}, x_{2}, x_{2}\right)$

Responsibility in idiosyncratic demand: normative and incentive justification.

- Dummy axiom: for any $i,\left\{\partial_{i} C(z)=0\right.$ for all $\left.z \in \mathbb{N}^{N}\right\} \Longrightarrow \varphi_{i}(C, x)=0$
- Non Dummy axiom: for any $i,\left\{C(z)=c\left(z_{i}\right)\right.$ for all $\left.z \in \mathbb{N}^{N}\right\} \Longrightarrow \varphi_{i}(C, x)=c\left(z_{i}\right)$
- Lemma: $\{$ Additivity + Dummy $\} \Longleftrightarrow\{$ Additivity + Non Dummy\}

The Dummy axiom eliminates the fixed shares, simple proportional, and cross subsidizing serial methods.

Representation of Additive + Dummy methods

- a unit flow f from 0 to x defines a simple shared flow by $s\left(z-e^{i}, z\right)=e^{i}$.
- we associate to flow f the probabilistic rationing method where $\operatorname{proba}\{r(t, x)=z\}$ is the in-flow at z.
- we associate to flow f a cost sharing method $\varphi_{i}(C, x)=\sum_{z \in] 0, x], z_{i}>0} \partial_{i} C(z) \cdot f\left(z-e^{i}, z\right)$. Dummy holds true.
- Theorem : every additive c.s. method $\varphi(x)$ meeting Dummy is represented uniquely by a unit flow f.

Thus the Additive and Dummy methods are in one-to-one correspondence with the subset of rationing methods constructed by flows.

Examples

- priority rationing \longleftrightarrow incremental cost sharing
- random priority rationing \longleftrightarrow Shapley-Shubik cost sharing : uniform average of all incremental methods \Leftrightarrow Shapley value of the stand alone game $v(S)=C(x(S), 0(N \backslash S))$
- proportional rationing \longleftrightarrow Aumann-Shapley cost sharing : uniform average over all paths from 0 to x.

Note that Aumann Shapley and simple proportional coincide when outputs are perfect substitute: $C(x)=$ $c\left(\sum_{i} x_{i}\right)$.

- fair queuing \longleftrightarrow subsidy-free serial cost sharing

The cost sharing methods corresponding to fair queuing*, equal chances rationing, equal chances*, are easy to define but have not emerged in the literature.

Characterization results: not as developed as one may want.

- Ordinality axiom: for all $i \in N, z_{i} \in \mathbb{N},\left\{\partial_{i} C\left(z_{i}, z_{-i}\right)=\right.$ 0 for all $\left.z_{-i}\right\} \Longrightarrow\left\{\right.$ we can merge z_{i} and $\left.z_{i}-1\right\}$

Theorem: Additivity + Dummy + Ordinality \Longleftrightarrow \{convex combinations of incremental methods\}.

Corollary: add Equat Treatment of Equals to pick the Shapley-Shubik method.

The Aumann Shapley method is characterized by Additivity, Dummy, and 2 additional properties:

- Simple proportional for perfect substitutes
- The corresponding rationing method meets Upper Composition

Limits of the additive approach

- Demand Monotonicity axiom: for all i, C and x, $\frac{\partial \varphi_{i}}{\partial x_{i}}(C, x) \geq 0$

Note that the Aumann-Shapley method fails Demand
Monotonicity!

- Theorem: if an additive method meets Dummy and Demand Monotonicity, it can't be simple proportional for perfect substitute outputs.

Strengthening Demand Monotonicity

- Group Demand Monotonicity: for all i, S, C and $x, i \in S \Longrightarrow \frac{\partial \varphi_{S}}{\partial x_{i}}(C, x) \geq 0$
- Solidarity : for all i, j, k all distinct, all C, x, $\frac{\partial \varphi_{j}}{\partial x_{i}}(C, x) \cdot \frac{\partial \varphi_{k}}{\partial x_{i}}(C, x) \geq 0$

Theorem: Additivity + Dummy + \{ Group Demand Monotonicity or Solidarity $\}=\emptyset$

Generalized proportional methods :

$\varphi(C, x)=\frac{f_{i}\left(x_{i}\right)}{\sum f_{j}\left(x_{j}\right)} \cdot C(x)$, where f_{i} is nondecreasing and positive.

- Theorem: The generalized proportional methods meet Group Demand Monotonicity and Solidarity. They are characterized by the combination \{Additivity + Demand Monotonicity + Solidarity\}.

