I. Modelling with complementarity constraints

Lunteren, January 14-16, 2003

- 1. Introduction & problem statement
- 2. Applications:
 - 2.1. Stackelberg Games
 - 2.2. Multi Objective Optimization
 - 2.3. Other Applications
- 3. A naive solution approach using NLP
- 4. Summary

Sven Leyffer

leyffer@mcs.anl.gov

Mathematics and Computer Science Division Argonne National Laboratory

Mathematical Program with Complementarity Constraints (MPCC)

$$\begin{cases} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & c(x) \ge 0 \\ & 0 \le x_1 \perp x_2 \ge 0 \end{cases}$$

where $x = (x_0, x_1, x_2)$... partition of variables and

 $0 \le x_1 \perp x_2 \ge 0 \quad \Leftrightarrow \quad \text{either } x_{1i} = 0 \text{ or } x_{2i} = 0$

Applications: [Luo et al., 1996], [Outrata et al., 1998] & [Ferris and Pang, 1997].

... equality constraints h(x) = 0: no problem!

Extension of classical Nash Game:

m players choose strategy $\pmb{x_i},\;i=1,\ldots,m$ to

$$(S_i) \begin{cases} \underset{x_i}{\text{minimize}} & f_i(\widehat{x_1}, \dots, x_i, \dots, \widehat{x_m}) \\ \text{subject to} & c_i(x_i) \ge 0 \end{cases}$$

given $\widehat{x_j}$, $j \neq i$ strategy of other players.

Nash Equilibrium: x^* such that $x_i^* \in$ solution set of (S_i) .

i.e. no player can do better by changing his/her strategy.

Nash Equilibrium \Leftrightarrow Complementarity Problem

KKT conditions of each (S_i) players optimization

$$\begin{cases} \underset{x_{i}}{\text{minimize}} & f_{i}(\widehat{x_{1}}, \dots, \widehat{x_{i}}, \dots, \widehat{x_{m}}) \\ \text{subject to} & c_{i}(x_{i}) \geq 0 \end{cases} \Rightarrow \begin{cases} \nabla_{x_{i}} f_{i}^{*} - \nabla_{x_{i}} c_{i}^{*^{T}} \lambda_{i}^{*} = 0 \\ 0 \leq \lambda_{i}^{*} \perp c_{i}(x_{i}^{*}) \geq 0 \end{cases}$$

all players have same information \rightarrow players are homogeneous

Stackelberg game has one distinct player: leader x_0 controls

Leader, x_0 , anticipates/controls response of followers

Followers are Nash players

 \Rightarrow equilibrium constraints parameterized in x_0

$$\nabla_{\boldsymbol{x}_{\boldsymbol{i}}} f_{\boldsymbol{i}}(\boldsymbol{x}_{\boldsymbol{0}};\ldots,\boldsymbol{x}_{\boldsymbol{i}},\ldots) - \nabla_{\boldsymbol{x}_{\boldsymbol{i}}} c_{\boldsymbol{i}}(\boldsymbol{x}_{\boldsymbol{0}};\boldsymbol{x}_{\boldsymbol{i}})^{T} \boldsymbol{\lambda}_{\boldsymbol{i}} = 0$$
$$c_{\boldsymbol{i}}(\boldsymbol{x}_{\boldsymbol{0}};\boldsymbol{x}_{\boldsymbol{i}}) - \boldsymbol{s}_{\boldsymbol{i}} = 0$$
$$0 \leq \boldsymbol{\lambda}_{\boldsymbol{i}} \perp \boldsymbol{s}_{\boldsymbol{i}} \geq 0$$

... become constraints in leader's optimization problem ...

$$\begin{cases} \min_{x_0} f(x_0) & \dots \text{ leader's objective} \\ \text{s.t.} \quad c(x_0) \ge 0 & \dots \text{ leader's constraints} \\ \hline \nabla_{x_i} f_i(x_0; \dots, x_i, \dots) - \nabla_{x_i} c_i(x_0; x_i)^T \lambda_i = 0 \\ & c_i(x_0; x_i) - s_i = 0 \\ & 0 \le \lambda_i \perp s_i \ge 0 \\ \end{cases} \dots \text{ followers}$$

Mathematical Program with Complementarity Constraints (MPCCs)

 x_0 controls or upper level variables x_i, λ_i, s_i states or lower level variables $i = 1, \ldots, m$

2.1. Stackelberg Games: Examples

Standard example:

- \circ government = leader; sets tax rates x_0
- consumers = followers; black market economy ...

Stackelberg games applied in oligopolistic market analysis

 \circ analysis/design of electricity markets

2000 California Electricity Market Crash

 \circ dominant player exercise market power:

 \circ increase prices by withholding NOx permits

Extension:

- EPEC: Equilibrium Problem with Equilibrium Constraints
 - Nash Game between two (or more) Stackelberg players \Rightarrow Equilibrium between several MPCCs (theory?, numerics?)

... optimization problems with conflicting aims ...

Multi-Objective Optimization Problem (MOOP)

$$(P) \begin{cases} \underset{x \in X}{\text{minimize}} & f(x) := (f_1(x), \dots, f_p(x)) \\ \text{subject to} & c(x) \ge 0 \end{cases}$$

f,c smooth & well behaved.

Applications

• Bridge design: minimize total mass & maximize stiffness

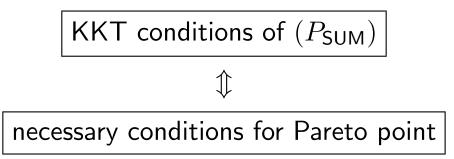
Airplane design: maximize fuel efficiency & payload;

minimize the weight & cabin noise.

Given: weights $w_k \ge 0$, $k = 1, \ldots, p$: $\sum w_k = 1$, solve

$$(P_{\mathsf{SUM}}) \left\{ \begin{array}{ll} \underset{x \in X}{\text{minimize}} & \sum_{k=1}^{p} w_{k} f_{k}(x) \\ \text{subject to} & c(x) \geq 0 \end{array} \right.$$

Solution x^* is single Pareto point.



Other approaches:

- Maximum effectiveness method.
- Goal Programming (most popular) ...

Aim: evaluate trade-offs \Rightarrow need more than 1 alternative ...

For different weights $w = w^1, w^2, \ldots, w^q$, solve

$$(P_{\mathsf{SUM}}) \begin{cases} \begin{array}{ll} \underset{x \in X}{\text{minimize}} & \sum_{k=1}^{p} w_{k}^{l} f_{k}(x) \\ \\ \text{subject to} & c(x) \geq 0 \end{array}, \ l = 1, \dots, q \end{cases}$$

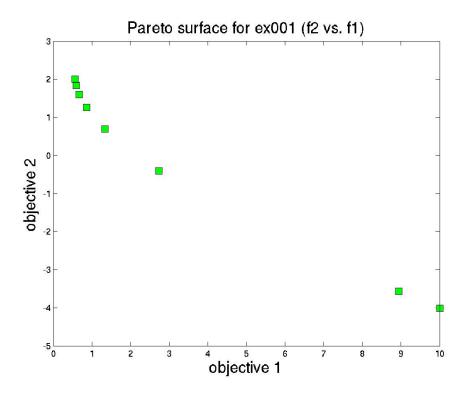
Disadvantages:

1. Nonconvex Pareto curve

 $\Rightarrow \not\exists w$, weights to represent nonconvex part of Pareto curve.

2. Uniform spread of weights \neq uniform description of Pareto curve.

Example: 2 objectives, 10 uniform weights $w^{l} = \left(\frac{l-1}{10}, 1 - \frac{l-1}{10}\right)$.



Pareto curve with uniformly distributed weights \Rightarrow poor representation of Pareto set

What is "good" representation $\mathcal{R} \subset \mathcal{P}$ of Pareto set? [Sayin, 2000]

1. Coverage error e_c : all elements of \mathcal{P} represented:

$$e_{c} := \begin{cases} \text{minimize} & e_{c} \\ \text{subject to} & e_{c} \ge \|v - u\| \qquad \forall v \in \mathcal{P} \qquad \forall u \in \mathcal{R} \end{cases}$$

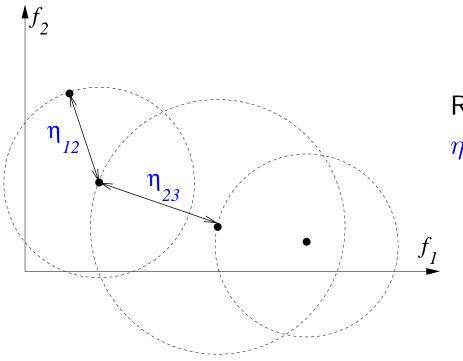
Requires knowledge of \mathcal{P} , not available!

2. Uniformity of representation: no redundancy:

$$\mathcal{R} \ \eta$$
-uniform, iff $\eta \leq \min_{u,v \in \mathcal{R}, \ u \neq v} \|u - v\|$

Sensible & computable \Rightarrow use here

Let
$$\eta_{l_1, l_2} := \|f(x^{l_1}) - f(x^{l_2})\|$$
 for $l_1 \neq l_2$



Representation \mathcal{R} η -uniform, iff

$$\eta = \min_{l_1 \neq l_2}(\eta_{l_1, l_2})$$

Find representation $\mathcal R$, maximizing uniformity η

$$\begin{array}{ll} \underset{x,w,\eta}{\operatorname{maximize}} & \eta\\ \text{subject to} & \eta \leq \|f(x^{l_1}) - f(x^{l_2})\|_2^2 & l_1 \neq l_2\\ & x^l \ \text{solves} \ (P_{\mathsf{SUM}}(w^l)) & \forall l \end{array}$$

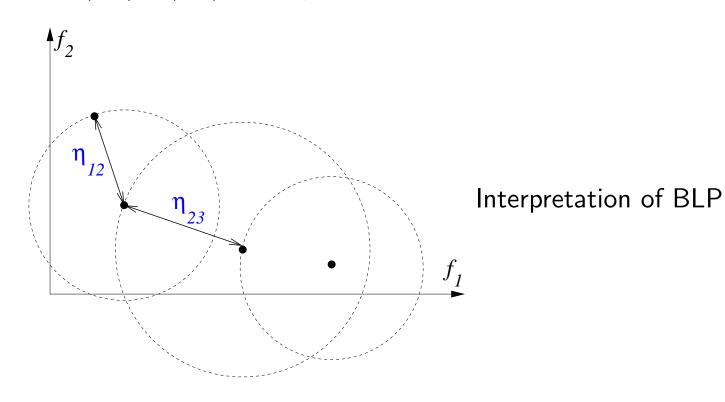
where

$$(P_{\mathsf{SUM}}(w^l)) \begin{cases} \min_{x \in X} & \sum_{k=1}^p w_k^l f_k(x) \\ \text{subject to} & c(x) \ge 0 \end{cases}$$

Bilevel optimization problem (x^l is solution to NLP).

Get representation \mathcal{R} , maximizing uniformity η by varying weights w^l .

 \Leftrightarrow maximize smallest distance between any pair $f(x^{l_1}), f(x^{l_2})$ for $l_1 \neq l_2$ by varying weights w^l .



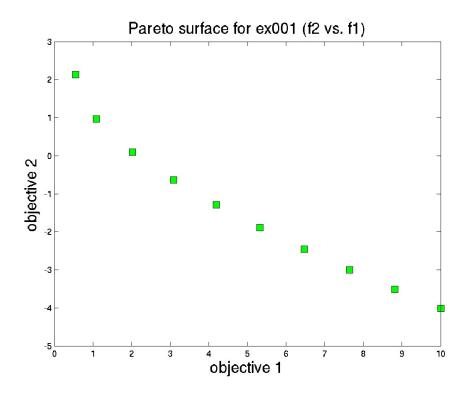
Replace 2nd level NLP $(P_{SUM}(w^l))$ by KKT cond^s:

$$(P_{\mathsf{SUM}}(\boldsymbol{w}^{\boldsymbol{l}})) \Rightarrow \begin{cases} 0 = \nabla \left(\boldsymbol{w}^{\boldsymbol{l}^{T}} f(\boldsymbol{x}^{\boldsymbol{l}}) \right) - \nabla c(\boldsymbol{x}^{\boldsymbol{l}}) \boldsymbol{\lambda}^{\boldsymbol{l}} \\ 0 \leq \boldsymbol{\lambda}^{\boldsymbol{l}} \perp c(\boldsymbol{x}^{\boldsymbol{l}}) \geq 0 \end{cases}$$

then

$$(\mathsf{BLP}) \Leftrightarrow \begin{cases} \begin{array}{ll} \underset{x^{l},\lambda^{l},w^{l},\eta}{\text{subject to}} & \eta \\ 0 = \nabla \left(w^{l^{T}}f(x^{l}) \right) - \nabla c(x^{l})\lambda^{l} & \forall l \\ 0 \leq \lambda^{l} \perp c(x^{l}) \geq 0 & \forall l \end{cases}$$

Example: 2 objectives, MPCC solution



Optimally chosen weights \Rightarrow uniform representation of Pareto set

- design of structures involving friction [Ferris and Tin-Loi, 1999a]
- brittle fracture identification [Tin-Loi and Que, 2002]
- problems in elastoplasticity [Ferris and Tin-Loi, 1999b]
- process engineering models [Rico-Ramirez and Westerberg, 1999], [Raghunathan and Biegler, 2002]
- floor planning in design of semi-conductor devices [Anjos and Vanelli, 2002]
- obstacle problems (PDE); packaging problems [Outrata et al., 1998]

Models involving nonsmooth functions; e.g. pipeline network

 $Q_{ij} =$ flow through pipe; $\Delta_{ij} =$ pressure drop

 $\Delta_{ij} = K \operatorname{sign}(Q_{ij}) \ Q_{ij}^2$

... usually model with 0-1 variables & "big-M" \Rightarrow notoriously bad

Split $Q_{ij} = Q_{ij}^+ - Q_{ij}^-$ into positive/negative part ...

$$\begin{cases} \Delta_{ij} = K \left(Q_{ij}^{+^2} - Q_{ij}^{-^2} \right) \\ 0 \le Q_{ij}^+ \perp Q_{ij}^- \ge 0 \end{cases}$$

 \Rightarrow smooth problem ... similar for \max functions

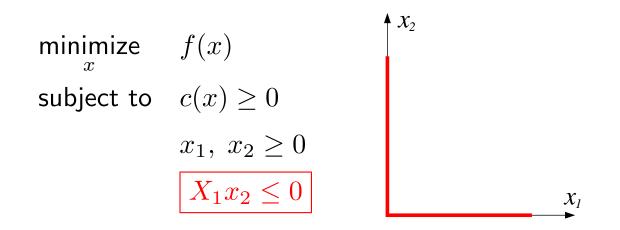
- Stackelberg games [Stackelberg, 1952]
- modeling of competition in deregulated electricity markets [Pieper, 2001], [Hobbs et al., 2000]
- volatility estimation in American option pricing [Wilmott et al., 1993], [Huang and Pang, 1999]
- transportation network design

 toll road pricing: how to set toll levels
 consumers move optimally (Wardrop's principle)
 = followers
 [Hearn and Ramana, 1997], [Ferris et al., 1999]

3. A naive solution approach

Replace complementarity $0 \le x_1 \perp x_2 \ge 0$... by nonlinear equations $X_1x_2 = 0$ or $x_1^Tx_2 = 0$

Since $x_1, x_2 \ge 0 \implies \text{relax "=" to "\leq" ...}$



Advantage: standard (?) NLP; use large-scale solvers ...

Snag: NLP violates standard assumptions!

Mangasarian Fromowitz Constraint Qualification at feasible \hat{x} :

 $\exists s \text{ such that } \hat{x}_1 + s_1 > 0, \ \hat{x}_2 + s_2 > 0 \text{ and } \hat{X}_2 s_1 + \hat{X}_1 s_2 < 0$... violated, e.g.

> Case 1: $\hat{x}_1 = \hat{x}_2 = 0 \implies 0 < 0$ Case 2: $\hat{x}_1 > 0$, $\hat{x}_2 = 0 \implies s_2 > 0$ and $\hat{X}_1 s_2 < 0$

MFCQ is important (minimalistic) stability assumption for NLP

 $\mathsf{MFCQ} \Leftrightarrow \mathsf{Lagrange} \ \mathsf{multiplier} \ \mathsf{set} \ \mathsf{bounded}$

- 1. constraint gradients are linearly dependent:
 - At $(0, \alpha)$ get $x_1 \ge 0$ and $x_1 \alpha \le 0$ both active

$$\Rightarrow \text{ gradients} \begin{bmatrix} 1 & \alpha \\ 0 & 0 \end{bmatrix} \text{ linearly dependent}$$

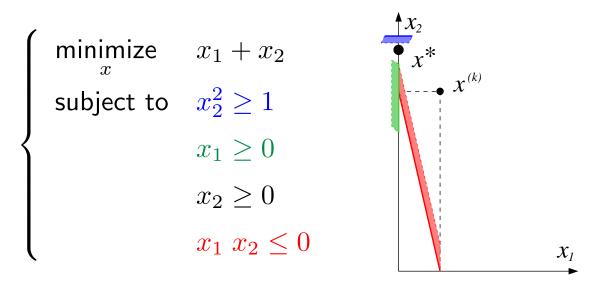
 \Rightarrow slow convergence

2. central path fails to exist:

Cannot find x_1 , $x_2 > 0$ such that $X_1x_2 < 0$ \Rightarrow multipliers blow up in practice ...

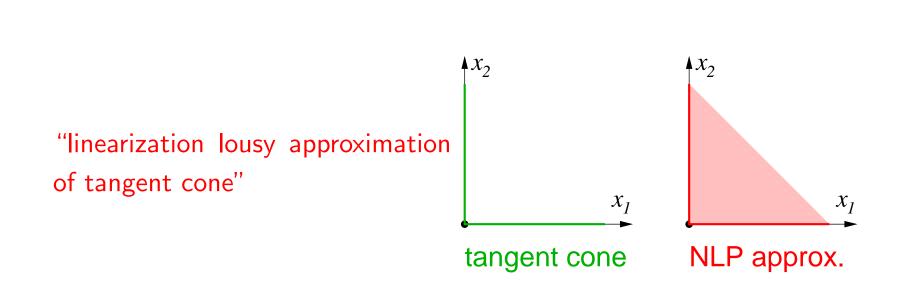
All numerical methods based on linearization ...

... but linearization inconsistent arbitrarily close to solution



generic problem \Rightarrow solvers take arbitrary steps

3.2. Consequences of MFCQ failure (cont.)



... NLP approx. over-estimates tangent cone at (0,0)

Small convex bilevel problems [Bard, 1988]
○ numerical experience with GRG (reduced gradient method)
⇒ failure on 50 - 70 % of problems

Nonlinear complementarity problem [Ferris and Pang, 1997]
CUTE problem LUBRIF: elastohydrodynamic lubrication
LANCELOT fails due to complementarity

4. Summary part I

- Mathematical Program with Complementarity Constraints
 useful modelling paradigm
 many practical applications (ongineering & company)
- many practical applications (engineering & economics)
- Equivalent NLP ($X_1x_2 \leq 0$) violates Mangasarian Fromowitz CQ
 - $\Rightarrow \circ$ unbounded multipliers
 - constraint gradients linearly dependent
 - \circ central path fails to exist
 - inconsistent linearizations
- \Rightarrow expect all sorts of numerical trouble ???

II. Solving MPCCs

Lunteren, January 14-16, 2003

- 5. Review of part I: complementarity constraints
- 6. Special purpose MPCC methods
- 7. Numerical experience with NLP solvers
- 8. Convergence of NLP solvers
 - 8.1. SQP methods lead the way ...
 - 8.2. Robust Interior Point Methods
- 9. Alternative NLP formulations
- 10. Conclusions & Open Questions

Sven Leyffer

leyffer@mcs.anl.gov

Mathematics and Computer Science Division Argonne National Laboratory

Mathematical Program with Complementarity Constraints (MPCC)

$$\begin{cases} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & c(x) \ge 0 \\ & 0 \le x_1 \perp x_2 \ge 0 \end{cases}$$

where $x = (x_0, x_1, x_2)$... partition of variables and $0 \le x_1 \perp x_2 \ge 0 \quad \Leftrightarrow \quad \text{either } x_{1i} = 0 \text{ or } x_{2i} = 0$

5. Review of Part I (cont.)

Write MPCC as equivalent NLP

Theoretical & numerical difficulties:

- NLP violates Mangasarian Fromowitz CQ
 - $\Rightarrow \circ$ unbounded multipliers
 - \circ constraint gradients linearly dependent
 - \circ central path fails to exist
 - inconsistent linearizations

Apparent difficulties of NLP motivate development of MPCC solvers:

- 1. implicit non-smooth techniques [Outrata et al., 1998],
- 2. smoothing & penalization approaches [Scholtes, 2001],
- 3. branch-and-bound: branch on $x_{1i} = 0$ or $x_{2i} = 0$ [Bard, 1988],
- 4. SQPEC and PIPA ... [Luo et al., 1996]

... require significantly more work than NLP approach

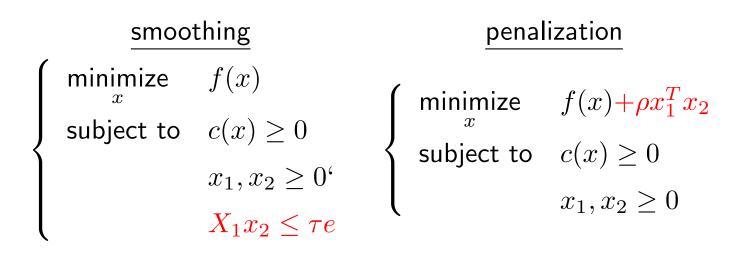
Key assumptions: $\forall x_0 \exists \text{ unique } (x_1, x_2) \in \text{sol}(c(x) \leq 0, \ 0 \leq x_1 \perp x_2 \geq 0)$ $\Rightarrow \text{ obtain non-smooth functions } x_1(x_0) \text{ and } x_2(x_0)$

MPCC now equivalent to

$$(NS) \begin{cases} \min_{x_0} & f(x_0, x_1(x_0), x_2(x_0)) \\ \text{subject to} & x_0 \in X \end{cases}$$

... objective nonsmooth.

- \bullet apply "bundle method" to solve $\left(NS\right)$
- solve complementarity problem for every (x_0) with PATH



... solve sequence of NLPs: $\tau \to 0 \text{ or } \rho \to \infty$

... NLPs satisfy Mangasarian Fromowitz CQ for $\tau>0$ or $\rho>0$

7. Numerical Experience with NLP solvers

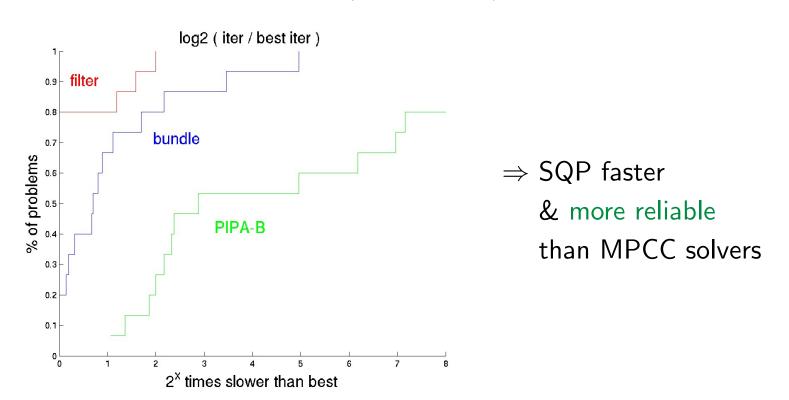
Numerical experience with MacMPEC
www.mcs.anl.gov/~leyffer/MacMPEC/

AMPL interface to SQP use AMPL's complements about 150 problems up to 7000 variables

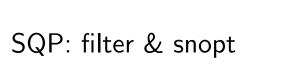
<u>MPCC solvers</u>: • bundle: implicit non-smooth approach • PIPA-B: penalty interior point algorithm

Performance plots: (subset of 15 problems)

$$\forall \text{ solver } s \quad \log_2\left(\frac{\# \operatorname{iter}(s,p)}{\operatorname{best_iter}(p)}\right) \ , \ p \in \operatorname{problem}$$

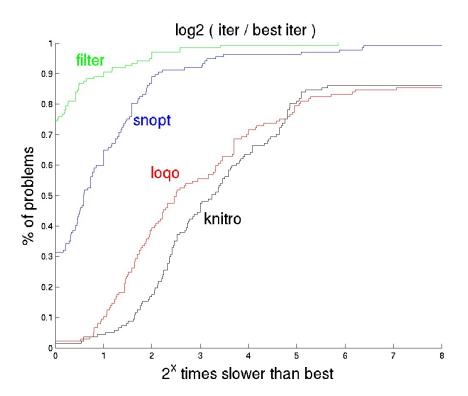


7.2. Comparison of NLP solvers



IPM: knitro & loqo

- SQP fast & reliable
- NLP better than MPCC
- IPM solvers less robust

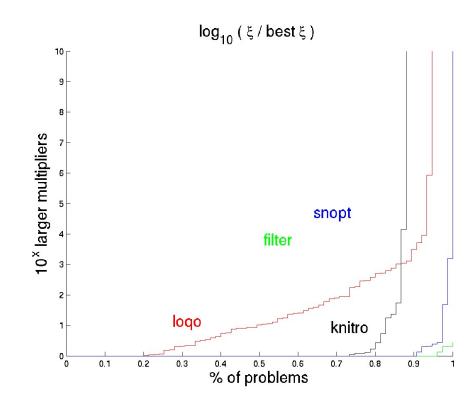


NEOS-server www-neos.mcs.anl.gov/

7.2. Comparison of NLP multipliers

IPM multipliers larger

- \Rightarrow smaller slacks
- \Rightarrow slower convergence



Key idea: strong-stationarity \Leftrightarrow KKT conditions of equivalent NLP

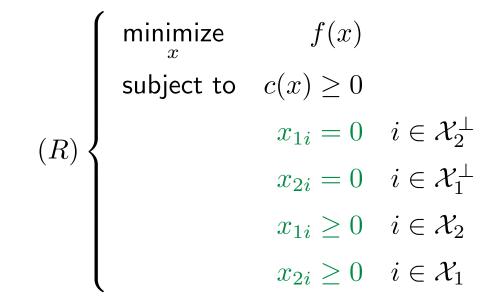
Two techniques:

- 1. relaxation of complementarity
- 2. penalization of complementarity \Rightarrow well behaved problem

... apply within Interior Point or SQP method ...

Aim: NLP solver with small modification works for MPCCs

Let $\mathcal{X}_1 \equiv \{i : x_{1i}^* = 0\}$ and \mathcal{X}_1^{\perp} complement ... \mathcal{X}_2 similar Relaxed NLP defined as



... well behaved NLP ... only use concept in proof \hat{x} solves (R) and $\widehat{x_1}^T \widehat{x_2} = 0 \Rightarrow$ solved MPCC !!!

KKT conditions of relaxed NLP:

 x^* strongly stationary $\Rightarrow \exists$ multipliers $\lambda^* \ge 0$, $\hat{\nu}_1, \hat{\nu}_2$:

$$\nabla f(x^*) - \nabla c(x^*)^T \lambda^* - \begin{pmatrix} 0 \\ \hat{\nu}_1 \\ \hat{\nu}_2 \end{pmatrix} = 0 \quad 1^{st} \text{ order}$$

$$\begin{split} c(x^*) &\geq 0, \ x_1^* \geq 0, \ x_2^* \geq 0 \ \text{ and } \ x_{1i}^* = 0 \ \text{or } x_{2i}^* = 0 & \text{ primal feas.} \\ c(x^*)^T \lambda \ &= \ x_1^{*^T} \hat{\nu}_1 \ &= \ x_2^{*^T} \hat{\nu}_2 \ &= \ 0 & \text{ compl. slack.} \\ \hat{\nu}_{1i}, \hat{\nu}_{2i} \geq 0, & \text{if } x_{1i}^* = x_{2i}^* = 0 \end{split}$$

 $\Rightarrow \exists$ bounded multipliers

8. Convergence of NLP solvers: Strong stationarity (cont.)

KKT conditions of equivalent NLP: $\exists \lambda^*, \nu_1^*, \nu_2^*, \xi^* \geq 0$

$$\nabla f(x^*) - \nabla c(x^*)^T \lambda^* - \begin{pmatrix} 0 \\ \nu_1^* - X_2^* \xi^* \\ \nu_2^* - X_1^* \xi^* \end{pmatrix} = 0$$

$$c(x^*) \ge 0, \ x_1^* \ge 0, \ x_2^* \ge 0 \text{ and } X_1^* x_2^* \le 0$$

$$c(x^*)^T \lambda = x_1^{*^T} \nu_1^* = x_2^{*^T} \nu_2^* = 0$$

$$\hat{\nu}_1 := \nu_1 - X_2^* \xi
\hat{\nu}_2 := \nu_2 - X_1^* \xi$$

remain bounded!!!

multipliers of relaxed NLP

Illustrative example $(x^* = (0, 1))$

KKT conditions:

$$\begin{cases} \min_{x} \quad \frac{1}{2}(x_{1}-1)^{2} + (x_{2}-1)^{2} \\ \text{s.t.} \quad 0 \le x_{1} \perp x_{2} \ge 0 \end{cases} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} \nu_{1} \\ 0 \end{pmatrix} - \xi \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 ν multiplier of $x_1 \ge 0$; ξ multiplier of $x_1 x_2 \le 0$.

Equivalent NLP ($x_1x_2 \leq 0$) violates MFCQ \Rightarrow unbounded multipliers

multipliers are a ray !!!

8. Convergence of NLP solvers: Strong stationarity (cont.)

$\Rightarrow \exists$ minimal (basic) multiplier ξ :

$$\xi_{i} = \begin{cases} 0 & \text{if } x_{1i}^{*} = x_{2i}^{*} = 0\\ \max\left(0, \frac{-\hat{\nu}_{1i}}{x_{2i}^{*}}\right) & \text{if } x_{2i}^{*} > 0\\ \max\left(0, \frac{-\hat{\nu}_{2i}}{x_{1i}^{*}}\right) & \text{if } x_{1i}^{*} > 0. \end{cases}$$

- \Rightarrow multipliers form ray ($\hat{\nu}_1 := \nu_1 X_2^* \xi$)
 - minimal (basic) multiplier is complementary

 $0 \leq \xi \perp \nu_1 \geq 0 \text{ and } 0 \leq \xi \perp \nu_2 \geq 0$

• non-zeros of minimal multiplier \equiv linearly independent gradients

8.1 Convergence of SQP for MPCCs

Sequential Quadratic Programming (SQP)

 $\begin{cases} \min_{x} f(x) \\ \text{s.t.} c(x) \ge 0 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1^T x_2 \le 0 \end{cases} \quad \begin{pmatrix} \min_{d} \nabla f^{k^T} d + \frac{1}{2} d^T W^k d \\ \text{s.t.} c^k + \nabla c^{k^T} d \ge 0 \\ x_1^k + d_1^k \ge 0 \\ x_2^k + d_2^k \ge 0 \\ x_1^{k^T} x_2^k + x_2^{k^T} d_1 + x_1^{k^T} d_2 \le 0 \end{cases}$

where $W^k \simeq \nabla^2 f^k - \sum \lambda_i \nabla^2 c^k$ Hessian of the Lagrangian.

Proof in two parts [Fletcher et al., 2002]: 1. $x_1^{k^T} x_2^k = 0$ & close to solution $\Rightarrow x_1^{(k+1)^T} x_2^{(k+1)} = 0$ stay on axis 2. $x_1^{k^T} x_2^k > 0 \ \forall k \Rightarrow$ basis bounded away from singularity \Rightarrow 2nd order convergence

 $x_1^{(k)^T} x_2^{(k)} = 0$, i.e. on axis

wlog $x_1^k > 0 \Rightarrow \mathsf{QP}$ includes $d_2 \ge 0$ and $x_1^k d_2 \le 0$

 $\Rightarrow d_2 = 0$ same as QP for relaxed NLP ...

 \Rightarrow work like SQP for relaxed NLP (well behaved)

 $\Rightarrow x_1^{(k+1)^T} x_2^{(k+1)} = 0$; remain on same face.

QP picks non-singular basis \equiv non-zeros of minimal multiplier

 \Rightarrow quadratic convergence

NB: Slacks matter: not true for $0 \le x_1 \perp F(x) \ge 0$.

8.1. Convergence of SQP for MPCCs (Part 2.)

$$x_{1}^{(k)^{T}} x_{2}^{(k)} > 0, \text{ i.e. off axis (assume wlog } x_{1}^{*} = 0)$$

QP picks basis, subset of
$$\begin{bmatrix} I & x_{2}^{(k)} \\ 0 & x_{1}^{(k)} \end{bmatrix}$$

Assume all QP consistent (yuk!) ... 2 cases:

case 1: true subset \Rightarrow non-singular \Rightarrow quadratic convergence case 2: full set $\Rightarrow x_1^{(k)} > 0$ (otherwise singular) $\Rightarrow x_1^{(k+1)^T} x_2^{(k+1)} = 0$ now see 1. above.

No MFCQ \Rightarrow inconsistent linearizations near solution Remedy: relax linearization of $X_1x_2 \leq 0$, constants $0 < \delta, \kappa < 1$:

$$X_1^k x_2^k + X_2^k d_1 + X_1^k d_2 \le \delta \left(x_1^{k^T} x_2^k \right)^{1+\kappa}$$

Many practical MPCCs have consistent linearizations

[Anitescu, 2000] shows convergence for ...

... SQP with elastic mode \equiv penalization (add $\rho x_1^T x_2$ to objective)

Why/how do IPM solvers fail ?

- 1. IPMs are lousy for infeasible NLPs; struggle without $X_1x_2 \leq 0$
- 2. Central path does not exist for MPCCs.
- 3. Special problem for knitro

 step decomposition: normal step + tangential step small slacks & large multipliers
 ⇒ small step size (0.5), due to tangential step

Surprise:

• IPMs still work OK for 80 % of MPCCs ... smallish multipliers (especially logo)

Counter example for PIPA:

- small well behaved MPCC; unique minimum
- forces PIPA to converge to a non-stationary point
- \Rightarrow contradicts convergence theory of PIPA

Reason for PIPA's failure: direction finding QP problem contains

$$||d_0||^2 \le c \left(||c^k|| + x_1^{k^T} x_2^k \right)$$

trust-region on step in controls x_0

- \Rightarrow when x^k becomes feasible, then rhs $\rightarrow 0$
- \Rightarrow limits progress to optimality

Ignore $c(z) \ge 0$ constraints, primal-dual equations ...

$$\begin{cases} \min_{x} f(x) \\ \text{s.t.} x_1 \ge 0 \\ x_2 \ge 0 \\ X_1 x_2 \le 0 \end{cases} \rightarrow \begin{cases} \nabla f(x) - \begin{pmatrix} 0 \\ \nu_1 - X_2 \xi \\ \nu_2 - X_1 \xi \end{pmatrix} = 0 \\ X_1 x_2 + s = 0 \\ X_1 \nu_1 = \mu e \\ X_2 \nu_2 = \mu e \\ S \xi = \mu e \end{cases}$$

... follow central path for $\mu \to 0$... fails to exist ...

8.2. Robust Interior Point Methods

Perturb rhs of complementarity constraint

$$\begin{cases} \min_{x} f(x) \\ \text{s.t.} x_{1} \ge 0 \\ x_{2} \ge 0 \\ X_{1}x_{2} \le C\mu e \end{cases} \rightarrow \begin{cases} \nabla f(x) - \begin{pmatrix} 0 \\ \nu_{1} - X_{2}\xi \\ \nu_{2} - X_{1}\xi \end{pmatrix} = 0 \\ X_{1}x_{2} + s = C\mu e \\ X_{1}\nu_{1} = \mu e \\ X_{2}\nu_{2} = \mu e \\ S\xi = \mu e \end{cases}$$

defines central path $(x(\mu), \nu(\mu), \xi(\mu))$ for barrier parameter $\mu > 0$. [Raghunathan and Biegler, 2002] and [Liu and Sun, 2002]

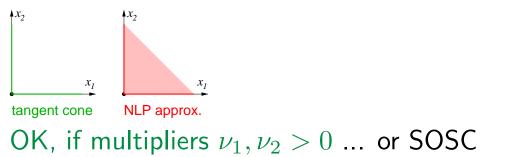
Alternative: ℓ_1 penalty of complementarity constraint

$$\begin{cases} \min_{x} f(x) + \rho x_{1}^{T} x_{2} \\ \text{s.t.} x_{1} \ge 0 \\ x_{2} \ge 0 \end{cases} \rightarrow \begin{cases} \nabla f(x) - \begin{pmatrix} 0 \\ \nu_{1} - \rho x_{2} \\ \nu_{2} - \rho x_{1} \end{pmatrix} = 0 \\ X_{1} \nu_{1} = \mu e \\ X_{2} \nu_{2} = \mu e \end{cases}$$

- smooth, since IPM keeps $x_1, x_2 > 0$
- \bullet exact, for $\rho > \|\xi\|_\infty$ basic multiplier
- if necessary, increase ρ during IPM iteration (while reducing μ) ... joint work in progress with Nocedal & Lopez

 Equivalent NLP violates Mangasarian Fromowitz CQ implies ... unbounded multipliers ... form a ray ⇒ ∃ bounded multipliers constraint gradients linearly dependent ... QP solver finds basis central path fails to exist ... perturb or penalize inconsistent linearizations ... perturb or penalize

- 2. Perturbation $x_1^T x_2 \leq 0$ to $x_1^T x_2 \leq -\epsilon \Rightarrow$ inconsistent NLP ... rhs "0" is structural zero treat like structural zeros in sparse linear algebra ... \Rightarrow never perturbed to $-\epsilon$
- **3.** Linearization at (0,0) is lousy approximation of tangent cone



4. [Bard, 1988] experience with GRG (50-70% failure) modern solvers more robust/advanced ...

5. Failure of LANCELOT on LUBRIF

mistakes in SIF file ... pressure & thickness mixed up \Rightarrow model makes no sense physically!

4. [Bard, 1988] experience with GRG (50-70% failure) modern solvers more robust/advanced ...

5. Failure of LANCELOT on LUBRIF

mistakes in SIF file ... pressure & thickness mixed up \Rightarrow model makes no sense physically! no complementarity ... minimize $x_1^T x_2 \Rightarrow$ model has MFCQ

Questions:

- Can we avoid infeasibility of QPs close to solution?
- Are there better formulations of MPCCs as NLPs?

Answer: Look at NCP functions!

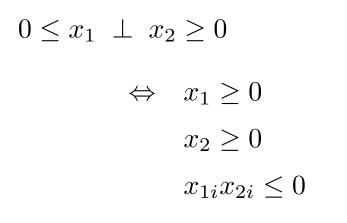
$$0 \le x_1 \perp x_2 \ge 0$$

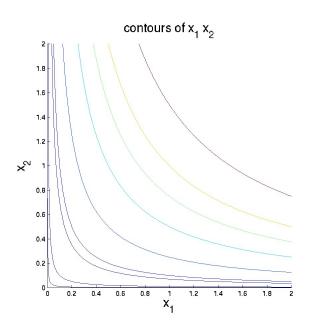
$$\Leftrightarrow \min(x_1, x_2) = 0 \qquad \text{min-function}$$

$$\Leftrightarrow x_1 + x_2 - \sqrt{x_1^2 + x_2^2} = 0 \quad \text{Fischer-Burmeister}$$

Snag: NCP functions are non-smooth & nasty at (0,0)! Idea: Keep bounds $x_i \ge 0$ & only use upper bound of NCP functions.

9.1. Scalar product function





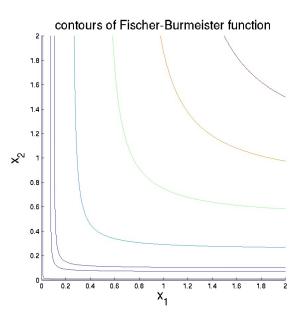
$$0 \le x_1 \perp x_2 \ge 0$$

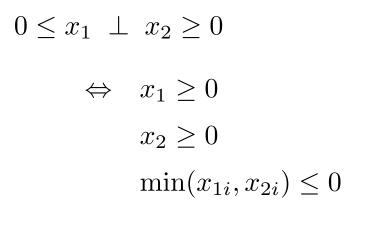
$$\Leftrightarrow \quad x_1 \ge 0$$

$$x_2 \ge 0$$

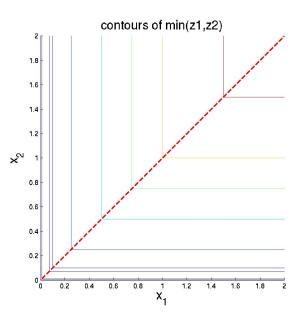
$$x_{1i} + x_{2i} - \sqrt{x_{1i}^2 + x_{2i}^2} \le 0$$

beware at (0,0)

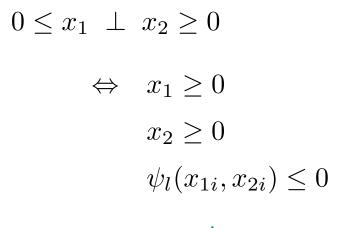




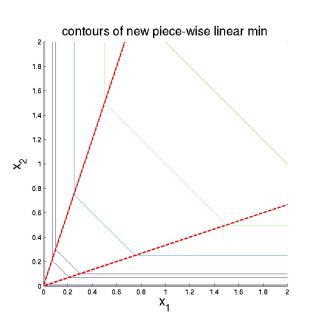
large arbitrary jumps

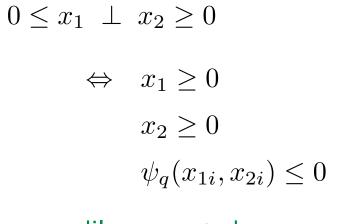


9.4. linearized min-function

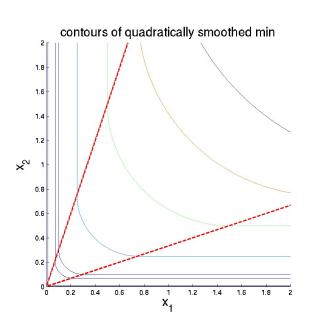


... or even smoother ...





... readily computed



min-functions give consistent linearization close to solution! \equiv constraint qualification \Rightarrow SQP converges without relaxation!

Important how to handle (0,0)

$$\min(x_1, x_2) = \begin{cases} 0 & x_1 = x_2 = 0 !!! \\ x_2 & x_2 \le x_1 \\ x_1 & x_1 \le x_2 \end{cases}$$

- ... $\nabla \min(x_1, x_2)$ accordingly
- \dots otherwise get trapped at (0,0).

Fischer-Burmeister linearizations can be inconsistent \Rightarrow relax

Gradients of Fischer-Burmeister bounded for $(x_{1i}, x_{2i}) \neq (0, 0)$ \Rightarrow special case at (0, 0).

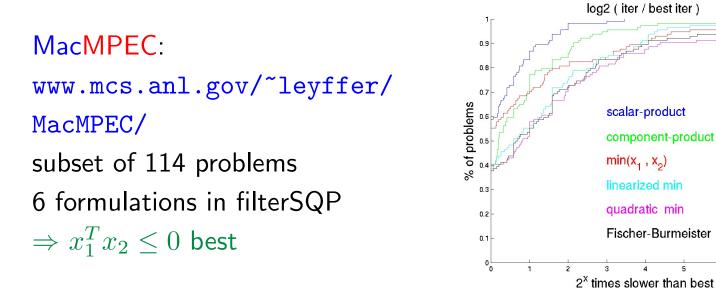
Hessian unbounded near $(0,0) \Rightarrow$ do not use Hessian OK, since no curvature in complementarity!

$$x_1^{(k)^T} x_2^{(k)} = 0$$
, i.e. on axis

- \Rightarrow SQP equivalent to SQP on relaxed NLP
- \Rightarrow SQP converges similar to scalar product formulation

... also used in [Facchinei et al., 1996].

9.8. Comparison of different formulations



- MPCCs emerging optimization area: many applications
- NLP solvers work very well; supported by theory!
- \bullet Alternative formulations; \min et al. and Fischer-Burmeister.

Open Questions:

- global convergence of NLP solvers?
- avoid convergence to "x-stationary" points
- need global minimizers for certain applications

References

- [Anitescu, 2000] Anitescu, M. (2000). On solving mathematical programs with complementarity constraints as nonlinear programs. Preprint ANL/MCS-P864-1200, MCS Division, Argonne National Laboratory, Argonne, IL, USA.
- [Anjos and Vanelli, 2002] Anjos, M. and Vanelli, A. (2002). A new mathematical programming framework for facility layout problems. Technical Report UW-E&CE#2002-04,, Department of Electrical & Computer Engineering, University of Waterloo,, Canada,.
- [Bard, 1988] Bard, J. (1988). Convex two-level optimization. Mathematical Programming, 40(1):15–27.
- [Facchinei et al., 1996] Facchinei, F., Jiang, H., and Qi, L. (1996). A smoothing method for mathematical programs with equilibrium constraints. Technical Report 03.96, Universita di Roma, "La Sapienza".

[Ferris et al., 1999] Ferris, M., Meeraus, A., and Rutherford, T. (1999). Computing Wardropian equilibrium in a complementarity framework. *Optimization Methods and Software*, 10:669–685.

- [Ferris and Pang, 1997] Ferris, M. and Pang, J. (1997). Engineering and economic applications of complementarity problems. *SIAM Review*, 39(4):669–713.
- [Ferris and Tin-Loi, 1999a] Ferris, M. and Tin-Loi, F. (1999a). Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Mathematical Programming Technical Report 99-01, University of Wisconsin.
- [Ferris and Tin-Loi, 1999b] Ferris, M. and Tin-Loi, F. (1999b). On the solution of a minimum weight elastoplastic problem involving displacement and complementarity constraints. *Computer Methods in Applied Mechanics and Engineering*, 174:107–120.
- [Fletcher et al., 2002] Fletcher, R., Leyffer, S., Ralph, D., and Scholtes,S. (2002). Local convergence of SQP methods for mathematical

programs with equilibrium constraints. Numerical Analysis Report NA/209, Department of Mathematics, University of Dundee, Dundee, DD1 4HN, UK.

- [Hearn and Ramana, 1997] Hearn, D. and Ramana, M. (1997(?)). Solving congestion toll pricing models. Technical report, Department of Industrial and Systems Engineering, University of Florida, http://www.ise.ufl.edu/hearn/crt.ps.
- [Hobbs et al., 2000] Hobbs, B., Metzler, C., and Pang, J.-S. (2000). Strategic gaming analysis for electric power systems: An mpec approach. *IEEE Transactions on Power Systems*, 15(2):638–645.
- [Huang and Pang, 1999] Huang, J. and Pang, J.-S. (1999). A mathematical programming with equilibrium approach to the implied volatility surface of American options. Technical report, Dept. of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland 21218-2682, USA.

- [Liu and Sun, 2002] Liu, X. and Sun, J. (2002). Generalized stationary points and an interior point method for mathematical programs with equilibrium constraints. Preprint, Singapore, School of Business.
- [Luo et al., 1996] Luo, Z.-Q., Pang, J.-S., and Ralph, D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press.
- [Outrata et al., 1998] Outrata, J., Kocvara, M., and Zowe, J. (1998). Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht.
- [Pieper, 2001] Pieper, H. (2001). Algorithms for Mathematical Programs with Equilibrium Constraints with Applications to deregulated electricity markets. PhD thesis, Department of Management Science and Engineering, Stanford University.
- [Raghunathan and Biegler, 2002] Raghunathan, A. and Biegler, L. T. (2002). Mpec formulations and algorithms in process engineering. Technical report, CMU Chemical Engineering.

- [Rico-Ramirez and Westerberg, 1999] Rico-Ramirez, V. and Westerberg, A. (1999). Conditional modeling. 2. solving using complementarity and boundary-crossing formulations. *Industrial Engineering and Chemistry Research*, 38:531–553.
- [Sayin, 2000] Sayin, S. (2000). Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. *Mathematical Programming*, 87(3):543–560.
- [Scholtes, 2001] Scholtes, S. (2001). Convergence properties of regularization schemes for mathematical programs with complementarity constraints. *SIAM Journal on Optimization*, 11(4):918–936.
- [Stackelberg, 1952] Stackelberg, H. V. (1952). The Theory of Market Economy. Oxford University Press.
- [Tin-Loi and Que, 2002] Tin-Loi, F. and Que, N. (2002). Nonlinear programming approaches for an inverse problem in quasibrittle fracture. *Mechanical Sciences*, 44:843–858.

[Wilmott et al., 1993] Wilmott, P., Dewyne, J., and Howison, S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press.

