
I. Modelling with complementarity constraints

Lunteren, January 14-16, 2003

1. Introduction & problem statement

2. Applications:

2.1. Stackelberg Games

2.2. Multi Objective Optimization

2.3. Other Applications

3. A naive solution approach using NLP

4. Summary

Sven Leyffer leyffer@mcs.anl.gov

Mathematics and Computer Science Division Argonne National Laboratory

leyffer@mcs.anl.gov


1. Introduction & problem statement

Mathematical Program with Complementarity Constraints (MPCC)
minimize

x
f(x)

subject to c(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0

where x = (x0, x1, x2) ... partition of variables and

0 ≤ x1 ⊥ x2 ≥ 0 ⇔ either x1i = 0 or x2i = 0

Applications: [Luo et al., 1996], [Outrata et al., 1998]

& [Ferris and Pang, 1997].

... equality constraints h(x) = 0: no problem!



2.1. Stackelberg Games: Nash Equilibrium

Extension of classical Nash Game:

m players choose strategy xi, i = 1, . . . ,m to

(Si)

 minimize
xi

fi(x̂1, . . . , xi, . . . , x̂m)

subject to ci(xi) ≥ 0

given x̂j , j 6= i strategy of other players.

Nash Equilibrium: x∗ such that x∗i ∈ solution set of (Si).

i.e. no player can do better by changing his/her strategy.



2.1. Stackelberg Games: Complementarity

Nash Equilibrium ⇔ Complementarity Problem

KKT conditions of each (Si) players optimization minimize
xi

fi(x̂1, . . . , xi, . . . , x̂m)

subject to ci(xi) ≥ 0
⇒

 ∇xi
f∗i −∇xi

c∗
T

i λ∗i = 0

0 ≤ λ∗i ⊥ ci(x∗i ) ≥ 0

all players have same information → players are homogeneous



2.1. Stackelberg Games: Leader-Follower

Stackelberg game has one distinct player: leader x0 controls

Leader, x0, anticipates/controls response of followers

Followers are Nash players

⇒ equilibrium constraints parameterized in x0

∇xi
fi(x0; . . . , xi, . . .)−∇xi

ci(x0;xi)Tλi = 0

ci(x0;xi)− si = 0

0 ≤ λi ⊥ si ≥ 0

... become constraints in leader’s optimization problem ...



2.1. Stackelberg Games: Leader’s problem



min
x0

f(x0) . . . leader’s objective

s.t. c(x0) ≥ 0 . . . leader’s constraints

∇xi
fi(x0; . . . , xi, . . .)−∇xi

ci(x0;xi)Tλi = 0

ci(x0;xi)− si = 0

0 ≤ λi ⊥ si ≥ 0

. . . followers

Mathematical Program with Complementarity Constraints (MPCCs)

x0 controls or upper level variables

xi, λi, si states or lower level variables i = 1, . . . ,m



2.1. Stackelberg Games: Examples

Standard example:

◦ government = leader; sets tax rates x0

◦ consumers = followers; black market economy ...

Stackelberg games applied in oligopolistic market analysis

◦ analysis/design of electricity markets

2000 California Electricity Market Crash

◦ dominant player exercise market power:

◦ increase prices by withholding NOx permits

Extension:

• EPEC: Equilibrium Problem with Equilibrium Constraints

◦ Nash Game between two (or more) Stackelberg players

⇒ Equilibrium between several MPCCs (theory?, numerics?)



2.2. Multi Objective Optimization Problems

... optimization problems with conflicting aims ...

Multi-Objective Optimization Problem (MOOP)

(P )

 minimize
x∈X

f(x) := (f1(x), . . . , fp(x))

subject to c(x) ≥ 0

f, c smooth & well behaved.

Applications

◦ Bridge design: minimize total mass & maximize stiffness

◦ Airplane design: maximize fuel efficiency & payload;

minimize the weight & cabin noise.



2.2. MOOP: Finding a single solution ...

Given: weights wk ≥ 0, k = 1, . . . , p :
∑
wk = 1, solve

(PSUM)


minimize

x∈X

p∑
k=1

wkfk(x)

subject to c(x) ≥ 0

Solution x∗ is single Pareto point.

KKT conditions of (PSUM)

m

necessary conditions for Pareto point

Other approaches:

• Maximum effectiveness method.

• Goal Programming (most popular) ...



2.2. MOOP: Finding multiple solutions ...

Aim: evaluate trade-offs ⇒ need more than 1 alternative ...

For different weights w = w1, w2, . . . , wq, solve

(PSUM)


minimize

x∈X

p∑
k=1

wl
kfk(x)

subject to c(x) ≥ 0

, l = 1, . . . , q

Disadvantages:

1. Nonconvex Pareto curve

⇒ 6 ∃ w, weights to represent nonconvex part of Pareto curve.

2. Uniform spread of weights 6⇒ uniform description of Pareto curve.



2.2. MOOP: Finding multiple solution ...

Example: 2 objectives, 10 uniform weights wl =
(

l−1
10 , 1−

l−1
10

)
.

Pareto curve with uniformly distributed weights

⇒ poor representation of Pareto set



2.2. MOOP as bilevel program (new!)

What is “good” representation R ⊂ P of Pareto set? [Sayin, 2000]

1. Coverage error ec: all elements of P represented:

ec :=

 minimize ec

subject to ec ≥ ‖v − u‖ ∀v ∈ P ∀u ∈ R

Requires knowledge of P, not available!

2. Uniformity of representation: no redundancy:

R η-uniform, iff η ≤ min
u,v∈R, u 6=v

‖u− v‖

Sensible & computable ⇒ use here



Uniformity of representation

Let ηl1,l2 := ‖f(xl1)− f(xl2)‖ for l1 6= l2

f
2

12

η
23

1
f

η
Representation R
η-uniform, iff

η = min
l1 6=l2

(ηl1,l2)



2.2. MOOP & bilevel program: Basic idea

Find representation R, maximizing uniformity η
maximize

x,w,η
η

subject to η ≤ ‖f(xl1)− f(xl2)‖22 l1 6= l2

xl solves (PSUM(wl)) ∀l

where

(PSUM(wl))


minimize

x∈X

p∑
k=1

wl
kfk(x)

subject to c(x) ≥ 0

Bilevel optimization problem (xl is solution to NLP).



Basic idea (cont.)

Get representation R, maximizing uniformity η by varying weights wl.

⇔ maximize smallest distance between any pair

f(xl1), f(xl2) for l1 6= l2 by varying weights wl.

f
2

12

η
23

1
f

η

Interpretation of BLP



2.2. MOOP: Formulation as MPCC

Replace 2nd level NLP (PSUM(wl)) by KKT conds:

(PSUM(wl)) ⇒

 0 = ∇
(
wlT f(xl)

)
−∇c(xl)λl

0 ≤ λl ⊥ c(xl) ≥ 0

then

(BLP) ⇔



maximize
xl,λl,wl,η

η

subject to η ≤ ‖f(xl1)− f(xl2)‖22 l1 6= l2

0 = ∇
(
wlT f(xl)

)
−∇c(xl)λl ∀l

0 ≤ λl ⊥ c(xl) ≥ 0 ∀l



2.2. MOOP: Solution of MPCC

Example: 2 objectives, MPCC solution

Optimally chosen weights

⇒ uniform representation of Pareto set



2.3. MPCC: Engineering Applications

• design of structures involving friction [Ferris and Tin-Loi, 1999a]

• brittle fracture identification [Tin-Loi and Que, 2002]

• problems in elastoplasticity [Ferris and Tin-Loi, 1999b]

• process engineering models [Rico-Ramirez and Westerberg, 1999],

[Raghunathan and Biegler, 2002]

• floor planning in design of semi-conductor devices

[Anjos and Vanelli, 2002]

• obstacle problems (PDE); packaging problems [Outrata et al., 1998]



2.3. MPCC: Engineering Applications (cont.)

Models involving nonsmooth functions; e.g. pipeline network

Qij = flow through pipe; ∆ij = pressure drop

∆ij = K sign(Qij) Q2
ij

... usually model with 0-1 variables & “big-M” ⇒ notoriously bad

Split Qij = Q+
ij −Q−ij into positive/negative part ... ∆ij = K

(
Q+2

ij −Q−
2

ij

)
0 ≤ Q+

ij ⊥ Q−ij ≥ 0

⇒ smooth problem ... similar for max functions



2.3. MPCC: Economic Applications

• Stackelberg games [Stackelberg, 1952]

• modeling of competition in deregulated electricity markets

[Pieper, 2001], [Hobbs et al., 2000]

• volatility estimation in American option pricing

[Wilmott et al., 1993], [Huang and Pang, 1999]

• transportation network design

◦ toll road pricing: how to set toll levels = leader

◦ consumers move optimally (Wardrop’s principle) = followers

◦ [Hearn and Ramana, 1997], [Ferris et al., 1999]



3. A naive solution approach

Replace complementarity 0 ≤ x1 ⊥ x2 ≥ 0 ...

by nonlinear equations X1x2 = 0 or xT
1 x2 = 0

Since x1, x2 ≥ 0 ⇒ relax “=” to “≤” ...

minimize
x

f(x)

subject to c(x) ≥ 0

x1, x2 ≥ 0

X1x2 ≤ 0 x

x

1

2

Advantage: standard (?) NLP; use large-scale solvers ...

Snag: NLP violates standard assumptions!



3.1. Mangasarian Fromowitz CQ fails

Mangasarian Fromowitz Constraint Qualification at feasible x̂:

∃ s such that x̂1 + s1 > 0, x̂2 + s2 > 0 and X̂2s1 + X̂1s2 < 0

... violated, e.g.

Case 1: x̂1 = x̂2 = 0 ⇒ 0 < 0

Case 2: x̂1 > 0, x̂2 = 0 ⇒ s2 > 0 and X̂1s2 < 0

MFCQ is important (minimalistic) stability assumption for NLP

MFCQ ⇔ Lagrange multiplier set bounded



3.2. Consequences of MFCQ failure

1. constraint gradients are linearly dependent:

• At (0, α) get x1 ≥ 0 and x1α ≤ 0 both active

⇒ gradients

 1 α

0 0

 linearly dependent

⇒ slow convergence

2. central path fails to exist:

Cannot find x1, x2 > 0 such that X1x2 < 0
⇒ multipliers blow up in practice ...



3.2. Consequences of MFCQ failure (cont.)

All numerical methods based on linearization ...

... but linearization inconsistent arbitrarily close to solution



minimize
x

x1 + x2

subject to x2
2 ≥ 1

x1 ≥ 0

x2 ≥ 0

x1 x2 ≤ 0

x (k)

1x

2x

x*

generic problem ⇒ solvers take arbitrary steps



3.2. Consequences of MFCQ failure (cont.)

“linearization lousy approximation

of tangent cone”

x2 x2

x1x1

tangent cone NLP approx.

... NLP approx. over-estimates tangent cone at (0, 0)



3.3. Numerical experience with X1x2 ≤ 0

Small convex bilevel problems [Bard, 1988]

◦ numerical experience with GRG (reduced gradient method)

⇒ failure on 50 - 70 % of problems

Nonlinear complementarity problem [Ferris and Pang, 1997]

◦ CUTE problem LUBRIF: elastohydrodynamic lubrication

◦ LANCELOT fails due to complementarity



4. Summary part I

• Mathematical Program with Complementarity Constraints

◦ useful modelling paradigm

◦ many practical applications (engineering & economics)

• Equivalent NLP (X1x2 ≤ 0) violates Mangasarian Fromowitz CQ

⇒ ◦ unbounded multipliers

◦ constraint gradients linearly dependent

◦ central path fails to exist

◦ inconsistent linearizations

⇒ expect all sorts of numerical trouble ???
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5. Review of Part I

Mathematical Program with Complementarity Constraints (MPCC)
minimize

x
f(x)

subject to c(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0

where x = (x0, x1, x2) ... partition of variables and

0 ≤ x1 ⊥ x2 ≥ 0 ⇔ either x1i = 0 or x2i = 0



5. Review of Part I (cont.)

Write MPCC as equivalent NLP
minimize

x
f(x)

subject to c(x) ≥ 0

x1, x2 ≥ 0, X1x2 ≤ 0

Theoretical & numerical difficulties:

• NLP violates Mangasarian Fromowitz CQ

⇒ ◦ unbounded multipliers

◦ constraint gradients linearly dependent

◦ central path fails to exist

◦ inconsistent linearizations



6. Special purpose MPCC methods

Apparent difficulties of NLP motivate development of MPCC solvers:

1. implicit non-smooth techniques [Outrata et al., 1998],

2. smoothing & penalization approaches [Scholtes, 2001],

3. branch-and-bound: branch on x1i = 0 or x2i = 0 [Bard, 1988],

4. SQPEC and PIPA ... [Luo et al., 1996]

... require significantly more work than NLP approach



6.1. Implicit non-smooth techniques

Key assumptions:

∀x0 ∃ unique (x1, x2) ∈ sol(c(x) ≤ 0, 0 ≤ x1 ⊥ x2 ≥ 0)

⇒ obtain non-smooth functions x1(x0) and x2(x0)

MPCC now equivalent to

(NS)

 minimize
x0

f(x0, x1(x0), x2(x0))

subject to x0 ∈ X

... objective nonsmooth.

• apply “bundle method” to solve (NS)
• solve complementarity problem for every (x0) with PATH



6.2. Smoothing & penalization approaches

smoothing penalization

minimize
x

f(x)

subject to c(x) ≥ 0

x1, x2 ≥ 0‘

X1x2 ≤ τe


minimize

x
f(x)+ρxT

1 x2

subject to c(x) ≥ 0

x1, x2 ≥ 0

... solve sequence of NLPs: τ → 0 or ρ→∞

... NLPs satisfy Mangasarian Fromowitz CQ for τ > 0 or ρ > 0



7. Numerical Experience with NLP solvers

Numerical experience with MacMPEC

www.mcs.anl.gov/~leyffer/MacMPEC/

AMPL interface to SQP

use AMPL’s complements

about 150 problems

up to 7000 variables

MPCC solvers: • bundle: implicit non-smooth approach

• PIPA-B: penalty interior point algorithm

www.mcs.anl.gov/~leyffer/MacMPEC/


7.1. SQP vs. MPCC solvers

Performance plots: (subset of 15 problems)

∀ solver s log2

(
# iter(s, p)
best iter(p)

)
, p ∈ problem

⇒ SQP faster

& more reliable

than MPCC solvers



7.2. Comparison of NLP solvers

SQP: filter & snopt

IPM: knitro & loqo

• SQP fast & reliable

• NLP better than MPCC

• IPM solvers less robust

NEOS-server www-neos.mcs.anl.gov/

www-neos.mcs.anl.gov/


7.2. Comparison of NLP multipliers

IPM multipliers larger

⇒ smaller slacks

⇒ slower convergence



8. Convergence of NLP solvers: Outline

Key idea: strong-stationarity ⇔ KKT conditions of equivalent NLP

Two techniques:

1. relaxation of complementarity

2. penalization of complementarity ⇒ well behaved problem

... apply within Interior Point or SQP method ...

Aim: NLP solver with small modification works for MPCCs



8. Convergence of NLP solvers: Strong stationarity

Let X1 ≡ {i : x∗1i = 0} and X⊥1 complement ... X2 similar

Relaxed NLP defined as

(R)



minimize
x

f(x)

subject to c(x) ≥ 0

x1i = 0 i ∈ X⊥2
x2i = 0 i ∈ X⊥1
x1i ≥ 0 i ∈ X2

x2i ≥ 0 i ∈ X1

... well behaved NLP ... only use concept in proof

x̂ solves (R) and x̂1
T
x̂2 = 0 ⇒ solved MPCC !!!



8. Convergence of NLP solvers: Strong stationarity

KKT conditions of relaxed NLP:

x∗strongly stationary ⇒ ∃ multipliers λ∗ ≥ 0, ν̂1, ν̂2:

∇f(x∗)−∇c(x∗)Tλ∗ −


0

ν̂1

ν̂2

 = 0 1st order

c(x∗) ≥ 0, x∗1 ≥ 0, x∗2 ≥ 0 and x∗1i = 0 or x∗2i = 0 primal feas.

c(x∗)Tλ = x∗
T

1 ν̂1 = x∗
T

2 ν̂2 = 0 compl. slack.

ν̂1i, ν̂2i ≥ 0, if x∗1i = x∗2i = 0

⇒ ∃ bounded multipliers



8. Convergence of NLP solvers: Strong stationarity (cont.)

KKT conditions of equivalent NLP: ∃λ∗, ν∗1 , ν∗2 , ξ∗ ≥ 0

∇f(x∗)−∇c(x∗)Tλ∗ −


0

ν∗1 −X∗2 ξ
∗

ν∗2 −X∗1 ξ
∗

 = 0

c(x∗) ≥ 0, x∗1 ≥ 0, x∗2 ≥ 0 and X∗1x
∗
2 ≤ 0

c(x∗)Tλ = x∗
T

1 ν∗1 = x∗
T

2 ν∗2 = 0

multipliers of relaxed NLP
ν̂1 := ν1 −X∗2 ξ

ν̂2 := ν2 −X∗1 ξ
remain bounded!!!



Illustrative example (x∗ = (0, 1))

 min
x

1
2 (x1 − 1)2 + (x2 − 1)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0

KKT conditions: −1

0

 =

 ν1

0

 − ξ

 1

0


ν multiplier of x1 ≥ 0; ξ multiplier of x1x2 ≤ 0.

Equivalent NLP (x1x2 ≤ 0) violates MFCQ ⇒ unbounded multipliers

x

x

1

2

x*

ξ

1
ν

− 1 = ν − ξ

multipliers are a ray !!!



8. Convergence of NLP solvers: Strong stationarity (cont.)

⇒ ∃ minimal (basic) multiplier ξ:

ξi =



0 if x∗1i = x∗2i = 0

max
(

0,
−ν̂1i

x∗2i

)
if x∗2i > 0

max
(

0,
−ν̂2i

x∗1i

)
if x∗1i > 0.

⇒ • multipliers form ray (ν̂1 := ν1 −X∗2 ξ)

• minimal (basic) multiplier is complementary

0 ≤ ξ ⊥ ν1 ≥ 0 and 0 ≤ ξ ⊥ ν2 ≥ 0
• non-zeros of minimal multiplier ≡ linearly independent gradients



8.1 Convergence of SQP for MPCCs

Sequential Quadratic Programming (SQP)

min
x

f(x)

s.t. c(x) ≥ 0

x1 ≥ 0

x2 ≥ 0

xT
1 x2 ≤ 0

→



min
d

∇fkT

d+ 1
2d

TW kd

s.t. ck +∇ckT

d ≥ 0

xk
1 + dk

1 ≥ 0

xk
2 + dk

2 ≥ 0

xkT

1 xk
2 + xkT

2 d1 + xkT

1 d2 ≤ 0

where W k ' ∇2fk −
∑
λi∇2ck Hessian of the Lagrangian.

Proof in two parts [Fletcher et al., 2002]:

1. xkT

1 xk
2 = 0 & close to solution ⇒ x

(k+1)T

1 x
(k+1)
2 = 0 stay on axis

2. xkT

1 xk
2 > 0 ∀k ⇒ basis bounded away from singularity

⇒ 2nd order convergence



8.1. Convergence of SQP for MPCCs (Part 1.)

x
(k)T

1 x
(k)
2 = 0, i.e. on axis

wlog xk
1 > 0 ⇒ QP includes d2 ≥ 0 and xk

1d2 ≤ 0

⇒ d2 = 0 same as QP for relaxed NLP ...

⇒ work like SQP for relaxed NLP (well behaved)

⇒ x
(k+1)T

1 x
(k+1)
2 = 0; remain on same face.

QP picks non-singular basis ≡ non-zeros of minimal multiplier

⇒ quadratic convergence

NB: Slacks matter: not true for 0 ≤ x1 ⊥ F (x) ≥ 0.



8.1. Convergence of SQP for MPCCs (Part 2.)

x
(k)T

1 x
(k)
2 > 0, i.e. off axis (assume wlog x∗1 = 0)

QP picks basis, subset of

 I x
(k)
2

0 x
(k)
1


x

x

1

2

Assume all QP consistent (yuk!) ... 2 cases:

case 1: true subset ⇒ non-singular ⇒ quadratic convergence

case 2: full set ⇒ x
(k)
1 > 0 (otherwise singular)

⇒ x
(k+1)T

1 x
(k+1)
2 = 0 now see 1. above.



8.1. Convergence of SQP for MPCCs

No MFCQ ⇒ inconsistent linearizations near solution

Remedy: relax linearization of X1x2 ≤ 0, constants 0 < δ, κ < 1:

Xk
1 x

k
2 +Xk

2 d1 +Xk
1 d2 ≤ δ

(
xkT

1 xk
2

)1+κ

Many practical MPCCs have consistent linearizations

[Anitescu, 2000] shows convergence for ...

... SQP with elastic mode ≡ penalization (add ρxT
1 x2 to objective)



8.2. Standard Interior Point Methods

Why/how do IPM solvers fail ?

1. IPMs are lousy for infeasible NLPs; struggle without X1x2 ≤ 0

2. Central path does not exist for MPCCs.

3. Special problem for knitro

• step decomposition: normal step + tangential step

small slacks & large multipliers

⇒ small step size (0.5), due to tangential step

Surprise:

• IPMs still work OK for 80 % of MPCCs ...

smallish multipliers (especially loqo)



8.2. Standard Interior Point Methods

Counter example for PIPA:

• small well behaved MPCC; unique minimum

• forces PIPA to converge to a non-stationary point

⇒ contradicts convergence theory of PIPA

Reason for PIPA’s failure: direction finding QP problem contains

‖d0‖2 ≤ c
(
‖ck‖+ xkT

1 xk
2

)
trust-region on step in controls x0

⇒ when xk becomes feasible, then rhs → 0
⇒ limits progress to optimality



8.2. Robust Interior Point Methods

Ignore c(z) ≥ 0 constraints, primal-dual equations ...



min
x

f(x)

s.t. x1 ≥ 0

x2 ≥ 0

X1x2 ≤ 0

→



∇f(x)−


0

ν1 −X2ξ

ν2 −X1ξ

 = 0

X1x2 + s = 0

X1ν1 = µe

X2ν2 = µe

Sξ = µe

... follow central path for µ→ 0 ... fails to exist ...



8.2. Robust Interior Point Methods

Perturb rhs of complementarity constraint



min
x

f(x)

s.t. x1 ≥ 0

x2 ≥ 0

X1x2 ≤ Cµe

→



∇f(x)−


0

ν1 −X2ξ

ν2 −X1ξ

 = 0

X1x2 + s = Cµe

X1ν1 = µe

X2ν2 = µe

Sξ = µe

defines central path (x(µ), ν(µ), ξ(µ)) for barrier parameter µ > 0.

[Raghunathan and Biegler, 2002] and [Liu and Sun, 2002]



8.2. Robust Interior Point Methods

Alternative: `1 penalty of complementarity constraint


min

x
f(x)+ρxT

1 x2

s.t. x1 ≥ 0

x2 ≥ 0

→



∇f(x)−


0

ν1 − ρx2

ν2 − ρx1

 = 0

X1ν1 = µe

X2ν2 = µe

• smooth, since IPM keeps x1, x2 > 0
• exact, for ρ > ‖ξ‖∞ basic multiplier

• if necessary, increase ρ during IPM iteration (while reducing µ)

... joint work in progress with Nocedal & Lopez



8.3. 5 Red Herrings

1. Equivalent NLP violates Mangasarian Fromowitz CQ implies ...

unbounded multipliers ... form a ray ⇒ ∃ bounded multipliers

constraint gradients linearly dependent ... QP solver finds basis

central path fails to exist ... perturb or penalize

inconsistent linearizations ... perturb or penalize



8.3. 5 Red Herrings

2. Perturbation xT
1 x2 ≤ 0 to xT

1 x2 ≤ −ε ⇒ inconsistent NLP ...

rhs “0” is structural zero

treat like structural zeros in sparse linear algebra ...

⇒ never perturbed to −ε

3. Linearization at (0, 0) is lousy approximation of tangent cone
x2 x2

x1x1

tangent cone NLP approx.

OK, if multipliers ν1, ν2 > 0 ... or SOSC



8.3. 5 Red Herrings

4. [Bard, 1988] experience with GRG (50-70% failure)

modern solvers more robust/advanced ...

5. Failure of LANCELOT on LUBRIF

mistakes in SIF file ... pressure & thickness mixed up

⇒ model makes no sense physically!



8.3. 5 Red Herrings

4. [Bard, 1988] experience with GRG (50-70% failure)

modern solvers more robust/advanced ...

5. Failure of LANCELOT on LUBRIF

mistakes in SIF file ... pressure & thickness mixed up

⇒ model makes no sense physically!

no complementarity ... minimize xT
1 x2 ⇒ model has MFCQ



9. New NCP functions & formulations

Questions:

• Can we avoid infeasibility of QPs close to solution?

• Are there better formulations of MPCCs as NLPs?

Answer: Look at NCP functions!

0 ≤ x1 ⊥ x2 ≥ 0

⇔ min (x1 , x2) = 0 min-function

⇔ x1 + x2 −
√
x2

1 + x2
2 = 0 Fischer-Burmeister

Snag: NCP functions are non-smooth & nasty at (0, 0)!

Idea: Keep bounds xi ≥ 0 & only use upper bound of NCP functions.



9.1. Scalar product function

0 ≤ x1 ⊥ x2 ≥ 0

⇔ x1 ≥ 0

x2 ≥ 0

x1ix2i ≤ 0



9.2. Fischer-Burmeister function

0 ≤ x1 ⊥ x2 ≥ 0

⇔ x1 ≥ 0

x2 ≥ 0

x1i + x2i −
√
x2

1i + x2
2i ≤ 0

beware at (0, 0)



9.3. min-function

0 ≤ x1 ⊥ x2 ≥ 0

⇔ x1 ≥ 0

x2 ≥ 0

min(x1i, x2i) ≤ 0

large arbitrary jumps



9.4. linearized min-function

0 ≤ x1 ⊥ x2 ≥ 0

⇔ x1 ≥ 0

x2 ≥ 0

ψl(x1i, x2i) ≤ 0

... or even smoother ...



9.5. quadratic min-function

0 ≤ x1 ⊥ x2 ≥ 0

⇔ x1 ≥ 0

x2 ≥ 0

ψq(x1i, x2i) ≤ 0

... readily computed



9.6 Properties of min-functions

min-functions give consistent linearization close to solution!

≡ constraint qualification ⇒ SQP converges without relaxation!

Important how to handle (0, 0)

min(x1, x2) =


0 x1 = x2 = 0 !!!

x2 x2 ≤ x1

x1 x1 ≤ x2

... ∇min(x1, x2) accordingly

... otherwise get trapped at (0, 0).



9.7. Properties of Fischer-Burmeister function

Fischer-Burmeister linearizations can be inconsistent ⇒ relax

Gradients of Fischer-Burmeister bounded for (x1i, x2i) 6= (0, 0)
⇒ special case at (0, 0).

Hessian unbounded near (0, 0) ⇒ do not use Hessian ...

... OK, since no curvature in complementarity!

x
(k)T

1 x
(k)
2 = 0, i.e. on axis

⇒ SQP equivalent to SQP on relaxed NLP

⇒ SQP converges similar to scalar product formulation

... also used in [Facchinei et al., 1996].



9.8. Comparison of different formulations

MacMPEC:

www.mcs.anl.gov/~leyffer/

MacMPEC/

subset of 114 problems

6 formulations in filterSQP

⇒ xT
1 x2 ≤ 0 best

www.mcs.anl.gov/~leyffer/MacMPEC/
www.mcs.anl.gov/~leyffer/MacMPEC/


10. Conclusion & Outlook: MPCCs

• MPCCs emerging optimization area: many applications

• NLP solvers work very well; supported by theory!

• Alternative formulations; min et al. and Fischer-Burmeister.

Open Questions:

◦ global convergence of NLP solvers?

◦ avoid convergence to “x-stationary” points

◦ need global minimizers for certain applications
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