Scheduling to Minimize Total Flow-Time

Stefano Leonardi Università di Roma "La Sapienza"

Parallel Machine Scheduling

- *m* parallel machines;
- J: set of n jobs
- p_j : processing time of job j;
- r_j : release time of job j
- Job j must be processed for p_j units of time after release time r_j
- C_j : completion time of job j
- $P = \frac{\max_{j} p_{j}}{\min_{j} p_{j}}$

Several Issues

- 1. On-line scheduling: the existence of a job is only known at time of release
- 2. *Preemption:* the execution of a job may be interrupted and resumed later
- 3. No-migration: preempted jobs must be resumed on the same machine
- 4. Non-clairvoyant scheduling: processing time is only known at time of completion.

 Subject of the second lecture.

Measure Quality of Service

• Average Response Time or Flow Time:

$$\frac{1}{n}\sum_{j\in J}F_j = \frac{1}{n}\sum_{j\in J}C_j - r_j$$

- Measure average waiting time of the users
- Widely accepted as a good measure of the QoS provided to the users

Measure Algorithm's Performance

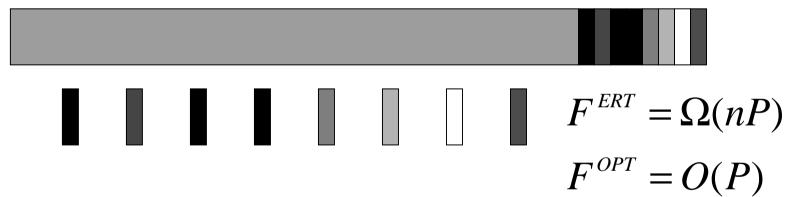
- Jobs are scheduled on-line, i.e. without knowledge of jobs released in the future.
- Algorithm *A* is *c*-competitive if for any input instance *J*:

$$A \lg(J) \le c Opt(J)$$

- Opt is the optimal scheduler that knows the whole input sequence in advance
- Also interested in off-line polynomial time approximation algorithms for NP-hard versions of the problem.

Simple strategies fail

• Earliest Release Time:



• Shortest Processing Time:

$$\frac{1}{1} \qquad F^{SPT} = \Omega(n) \qquad F^{OPT} = O(1)$$

Preemption Improves System Responsiveness

- Job preemption improves average flow time.
- E.g.: preempt long jobs to give precedence to short jobs.
- Preemption is not very expensive, context switching at the local processor.

$$F^{SRPT} = O(P)$$

Approximating Total Flow Time with Preemption

- Shortest Remaining Processing Time (SRPT) optimal for m=1[Baker 74]
- NP-hard for m=1 machines if preemption is not allowed [J.K. Lenstra 77]. We discuss later non-preemptive approximations.
- NP-hard for m>1 machines even if preemption is allowed [Du, Leung, Young 90]

Approximating total flow time on parallel machines with preemption

- SRPT is $\Theta\left(\log \frac{n}{m}, \log P\right)$ -competitive for m machines [Leonardi, Raz, 97]
- SRPT uses migration
- No better approximation is known
- Migration of preempted jobs may be expensive. We discuss later non-migrative algorithms.

SRPT is $\Theta(\log P)$ - competitive

• $x_j(t)$: remaining processing time of job j at time t

- Job j of class k at time t if $x_j \in [2^k, 2^{k+1})$
- At most O(log P) classes: a job is preempted only when a shorter job is released

Analysis of SRPT

- • $\delta^A(t)$: # of jobs in A's schedule at time t
- • $V^{A(t)}$: Volume = total remaining processing time in in A's schedule at time t
- $\gamma^{A}(t)$: # of non-idle machines in A's schedule at time t
- T: set of time instants with $\gamma^A(t) = n$

More notation

$$^{\bullet} \Delta V^{A}(t) = V^{A}(t) - V^{OPT}(t)$$

• $f_{\leq k,\geq h}^{(t)}$: value of function f when restricted to job of class between h and k

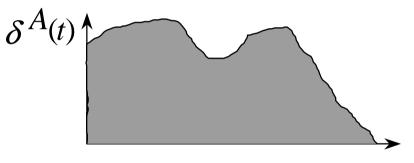
•
$$f = \delta, V, \Delta \delta, \Delta V$$

• $\Delta V_{\leq k}(t)$: volume difference of jobs of class at most k between the algorithm and the optimum

An alternative definition of Total Flow Time

$$F^{A}(t) = \sum_{j \in J} C_{j}^{A} - r_{j} = \int_{t \ge 0} S^{A}(t) dt$$

$$\int_{t\geq 0} \gamma^{A}(t)dt = \sum_{j\in J} p_{j} \leq F^{OPT}$$



SRPT is O(log P)-comp. I

•
$$F^{A} = \int_{t \ge 0} \mathcal{S}^{A}(t)dt = \int_{t \notin T} \mathcal{S}^{A}(t)dt + \int_{t \in T} \mathcal{S}^{A}(t)dt$$

$$\leq \int_{t \notin T} \gamma^{A}(t) dt + \sum_{k} \int_{t \in T} \delta_{=k}^{A} (t) dt$$

• If $\forall t \in T$, $\delta_{=k}^{A}(t) \leq 2m + 2\delta^{OPT}(t)$ then

$$F^{A} \leq \int_{t \notin T} \gamma^{A}(t)dt + 2\sum_{k} \int_{t \in T} mdt + 2\sum_{k} \int_{t \in T} \delta^{OPT}_{=k}(t)dt$$

$$\leq O(\log P) \int_{t \geq 0} \gamma^{A}(t)dt + O(\log P) \int_{t \in T} \delta^{OPT}(t)dt$$

$$= O(\log P)F^{OPT}$$

SRPT is O(log P)-comp. II

- t_k : last time $\leq t \in T$ when jobs of class > k have been processed
- Lemma: $\Delta V_{\leq k}(t) \leq m2^{k+1}$

Proof. Since *SRPT* has processed jobs of class $\leq k$ between t_k and t, $\Delta V_{\leq k}(t) \leq \Delta V_{\leq k}(t_k)$

At time t_k , at most m jobs of class $\leq k$ in SRPT's schedule: $\Delta V_{\leq k}(t_k) \leq V_{\leq k}^A(t_k) \leq m2^{k+1}$

SRPT is O(log P)-comp. III

• Lemma: $\forall t \in T$, $\delta_{=k}^{A}(t) \leq 2m + 2\delta^{OPT}(t)$

Proof:

$$\delta_{=k}^{A}(t) \leq \frac{V_{=k}^{A}}{2^{k}} = \frac{\Delta V_{=k} + V_{=k}^{OPT}}{2^{k}} = \frac{\Delta V_{\leq k} - \Delta V_{\leq k-1}}{2^{k}} + \frac{V_{=k}^{OPT}}{2^{k}}$$

$$\leq \frac{m2^{k+1}}{2^{k}} + \frac{V_{=k}^{OPT}}{2^{k}} + \frac{V_{=k}^{OPT}}{2^{k}} \leq 2m + \frac{V_{=k}^{OPT}}{2^{k}}$$

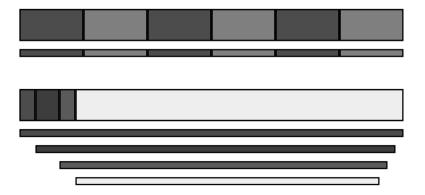
$$\leq 2m + 2\delta_{\leq k}^{OPT}$$

Approximating Total Flow Time without Migration

- A preemptive algorithm for parallel machine scheduling without migration [Awerbuch, Azar, Leonardi, Regev,99]
- AALR is $O(\log n, \log P)$ competitive
- Non- migrative algorithms are still very effective for Flow Time optimization

Why the "most" straightforward approach fails

- Assign jobs to machines using the SPT rule among the jobs never processed
- Process a job up to completion on the machine of assignment
- Some machines get overloaded. Ex:



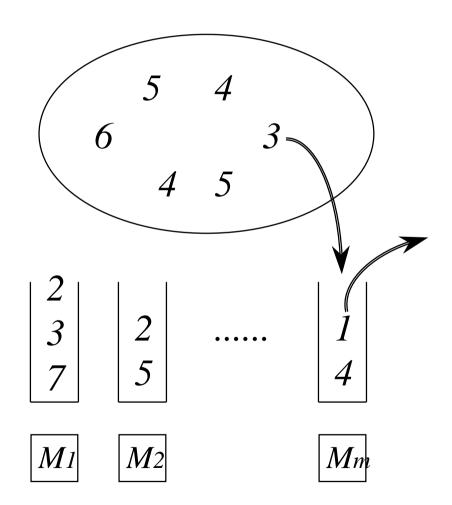
The Algorithm for Preemptive Scheduling Without Migration

- Jobs never processed are in a *Pool*
- Jobs assigned to a machine are in a *Stack*
- Job *j* of class *k* at time *t* if remaining processing time at time *t* is $x_j(t) \in [2^k, 2^{k+1})$
- Jobs are inserted in the pool at release time *Observe*: Class of a job changes over time

Assign Jobs to Machines

- On machine *i* schedule the job at the top of machine *i*'s stack
- If the stack of a machine is empty, push the job of lowest class in the pool
- If a job in the pool has class lower than a job at the top of a stack, then push this job into that stack.
- Pop a job from the stack when completed

A picture of the algorithm



AALR is O(log P)-competitive

- $\delta^{A,S}(t)$: total # of jobs in the *m stacks* at time *t*
- $\delta^{A,P}(t)$: # of jobs in the *pool* at time t

$$F^{A}(t) = \int_{t\geq 0} \mathcal{S}^{A,S}(t)dt + \int_{t\geq 0} \mathcal{S}^{A,P}(t)dt$$

- Prove the bound separately for jobs in the stacks and in the pool.
- For jobs in the pool: $\int_{t\geq 0} \delta^{A,P}(t) dt = O(\log P) F^{OPT}$ proved similarly to SRPT

Jobs in the Machine's Stacks:

$$\int_{t\geq 0} \delta^{A\lg,S}(t)dt = O(\log P) F^{OPT}$$

- Jobs in a stack are in a strictly decreasing class order
- At most O(log P) jobs in a stack at any time t

$$\int_{t\geq 0} \mathcal{S}^{A\lg,S}(t)dt \leq \int_{t\geq 0} \gamma(t)\log Pdt = \log P \int_{t\geq 0} \gamma(t)dt = \log P \sum_{j\in J} p_j \leq \log P F^{OPT}$$

Non-preemptive Algorithms

- $\Omega(n)$ -competitive lower bound
- NP-hard for m=1 [J.K. Lenstra 77]
- • $\Theta(\sqrt{n})$ approximation for m=1[Kellerer, Tauthenam, Woeginger, 96]
- $\tilde{O}(\sqrt{n/m})$ approximation for m machines [Leonardi, Raz, 97]
- $\Omega(n^{1/3})$ approximation lower bound for m machines if $P \neq NP$ [Leonardi, Raz, 97]

Non-preemptive approximation

- Theorem 1 [LR97] From preemptive c approximation to $acO(\sqrt{n/m})$ non-preemptive approximation
- Corollary 2 There exists an $O(\sqrt{n})$ approximation for a single machine.
- Corollary 3 There exists an $O(\sqrt{n/m} \log n/m)$ approximation for parallel machines

How to remove preemptions

• Notation for preemptive solution:

$$-S_{j}^{p}$$
 : starting time

$$-C_j^p \ge S_j^p + p_j$$
 : completion time

$$-F^{p} = \sum_{j \in J} F_{j}^{p} = \sum_{j \in J} C_{j}^{p} - r_{j} \quad \text{: total flow time}$$
• Non-preemptive solution:

$$C_{j} = S_{j} + p_{j}$$

Remove preemption in big jobs expensive

The Algorithm for m=1

Big and Small jobs:

• Big jobs:
$$B = \left\{ j : F_j^p \ge \frac{F^p}{\sqrt{n}} \right\}$$

• Small jobs
$$S = \left\{ j : F_j^p < \frac{F^p}{\sqrt{n}} \right\}$$

• At most \sqrt{n} big jobs

Algorithm for Small jobs

• Schedule small jobs in order of S_j^p

•
$$S_{j} \leq S_{j}^{p} + \frac{F^{p}}{\sqrt{n}}$$
 since

$$S_{j} \leq \max_{j': S_{j'}^{p} \leq S_{j}^{p}} \left\{ S_{j'}^{p} + F_{j'}^{p} \right\} \leq S_{j}^{p} + \frac{F^{p}}{\sqrt{n}}$$

•
$$|F - F|^p |_S \le n \left(\frac{F^p}{\sqrt{n}}\right) = \sqrt{n} F^p$$

Algorithm for Big jobs

- For a big job j, partition time $t \ge r_j$ into intervals with p_i units of idle time.
- Between the first \sqrt{n} such intervals there exists an interval I with at most \sqrt{n} jobs.
- Schedule job j at the beginning of interval I
- Shift ahead the at most \sqrt{n} jobs scheduled in I

Big jobs: Analysis.

1. Big job j delayed by p_i idle time units for each interval before I

$$|F - F|^p |_B \leq \sqrt{n} \sum_{i \in B} p_i$$

 $|F - F|_{B} \leq \sqrt{n} \sum_{j \in B} p_{j}$ 2. Big job j delayed by at most $\sum_{i} p_{j}$

$$|F - F|^p |_B \leq \sqrt{n} \sum_{j \in B} p_j$$

3. At most \sqrt{n} jobs in interval I delayed by p_j

$$|F - F|^p |_B \leq \sqrt{n} \sum_{i \in B} p_i$$

Weighted Flow Time

$$\min \sum_{j \in J} w_j F_j^p = \sum_{j \in J} w_j (C_j^p - r_j)$$

• $O(\log^2 P)$ - competitive algorithm for m=1.

- Ω (min $\left\{ \sqrt{W}, \sqrt{P}, \left(\frac{w_j n}{m} \right)^{1/4} \right\}$ rand. comp. lower bound for m>1 [Chekuri, Khanna, Zhu, 2001]
- O(k) comp for k weight classes [Bansal, Dhamdere, 2003]

Measure Quality of Service and System's Load

• Average Stretch:

$$\frac{1}{n} \sum_{j \in J} S_j = \frac{1}{n} \sum_{j \in J} \frac{C_j - r_j}{p_j}$$

- Measure of the load of the system
- It is not affected from long jobs
- Measure user's service degradation with respect to an unloaded system

Results for minimizing average stretch

• SRPT is O(1) competitive for m=1 and m>1. [Muthukrishnan, Rajaraman, Shaheen, Gehrke, 1999]

• AALR is O(1) on m>1 competitive without job migration [Becchetti, Leonardi, Muthukrishnan, 2000]

Open Problems

• Two major open problems:

 O(1) approximation for preemptive flow time on parallel machines

 O(1) approximation for weighted flow time on a single machine