Scheduling to Minimize Total
Flow-Time

Stefano Leonardi
Universitadi Roma “La Sapienza’

Parallel Machine Scheduling

m parallel machines,
J:setof njobs
Dj: processing time of job J;
ri: releasetime of job |
Job | must be processed for pj units of time after
release timer;
Cj: completion time of job |
P = max ; Pi
min; P

Severa |ssues

On-line scheduling: the existence of ajob is
only known at time of release

Preemption: the execution of ajob may be
Interrupted and resumed later

No-migration: preempted jobs must be resumed
on the same machine

Non-clairvoyant scheduling: processing timeis
only known at time of completion.

Subject of the second lecture.

Measure Quality of Service

* Average Response Time or Flow Time:

1 1
“Y F==>Ci—rj

ANTEN NoJ
* Measure average waiting time of the users

» Widely accepted as a good measure of the
QoS provided to the users

Measure Algorithm’s
Performance

Jobs are scheduled on-line, i1.e. without knowledge
of jobs released in the future.

Algorithm A is c-competitive if for any input
Instance J.

Alg(J) <cOpt(J)

Opt isthe optimal scheduler that knows the whole
INnput sequence in advance

Also interested in off-line polynomial time
approximation algorithms for NP-hard versions of
the problem.

Simple strategies fall

e Earliest Release Time:

EE——

1L 000 Fr=arp

| | F OPT — O(P)
« Shortest Processing Time:

111 B
1 FTT=0(n) FYT=0()

Preemption Improves System
Responsiveness

 Job preemption improves average flow
time.

* E.g.. preempt long jobs to give precedence
to short jobs.

* Preemption Is not very expensive, context
switching at the local processor.

FT = O(P)

Approximating Total Flow Time
with Preemption

e Shortest Remaining Processing Time
(SRPT) optimal for m=1[Baker 74]

 NP-hard for m=1 machines if preemption is
not allowed [J.K. Lenstra 77]. We discuss
later non-preemptive approximations.

 NP-hard for m>1 machines even If
preemption is allowed [Du, Leung, Y oung
90]

Approximating total flow time on
parallel machines with
preemption

e SRPT Is @(Iog%,log Pj -competitive for m

machines [Leonardi, Raz, 97]

e SRPT uses migration
* No better approximation is known

* Migration of preempted jobs may be
expensive. We discuss later non-migrative
algorithms.

SRPT I1s &(logP) - competitive

*X (t) : remaining processing time of job j at time
t

+ Jobj of classkat timet if X0 [2,2)

o At most O(log P) classes. ajob is preempted
only when a shorter job Is released

Analysis of SRPT

J* (): # of jobsin A’s schedule at time't

V0 volume = total remaini ng processing timein
In A’s schedule at timet

. yA(t) . # of non-idle machinesin A’s schedule at
timet

T :setof timeinstantswith J'/A(t)=ﬂ

More notation

*AV 0=V IR V()

of . p®: value of function f when restricted to job
of class between h and k

. T =0V,00,V

e 0 - volume difference of jobs of class at most k
between the algorithm and the optimum

An alternative definition of Total
Flow Time

FA®) =XC =i | At

oA
IOVA(t)dt = ,DZJ p,<F™

t

SRPT 1s O(log P)-comp. |
. EA= [FA(t)dt= 15 (Hdt + j5 (t)dt

t=0

< [pyAt)dt - > [of (t)dt

tr taT
o If OtOT, o2 (1)<2m+207" (1) then
FA< [AD)dt-2Y [mdt+2Y [oS7T (t)dt
toT K tOT kK tOom
<O(logP) | yAt)dt-O(logP) [7" (t)dt

=O(logP)F°F"

SRPT 1s O(log P)-comp. |1

« [:lasttimet[Twhen jobs of class >k have been
processed

o Lemma: AV, (t) < m2

Proof. Since SRPT has processed jobs of class<k
between tk and t, Avsk (t) S Avsk (tk)

Attime T, at most mjobs of class<kin SRPT's
schedule:” AV., (t,) < V.A(t,) < m2*

SRPT i1s O(log P)-comp. I

e LemmatdT, J4(t) <2m+25°" (t)
Proof:

or ()< Ve = Ve VT AV AV VT

2" 2" oK ok
k+1 OPT OPT OPT
< m22k v 2;“ V:2k < 2m+ 2k =

<2m+20."

Approximating Total Flow Time
without Migration

e A preemptive algorithm for parallel
machine scheduling without migration
[Awerbuch, Azar, Leonardi, Regev,99]

. AALRisO(logn,log P)- competitive

 Non- migrative algorithms are still very
effective for Flow Time optimization

Why the **most” straightforward
approach fails

e Assign jobsto machines using the SPT rule
among the jobs never processed

* Process ajob up to completion on the
machine of assignment

e Some machines get overloaded. EX:
1 [[P

The Algorithm for Preemptive
Scheduling Without Migration

Jobs never processed are in a Pool
Jobs assigned to a machine are in a Stack

Job | of classk at timet If remaining
processing time at time t is %(t) O[2°,2)

Jobs are inserted in the pool at release time
Observe: Class of ajob changes over time

Assign Jobsto Machines

On machine | schedule the job at the top of
machine|’s stack

f the stack of amachine is empty, push the
job of lowest class in the pool

f ajob in the pool has class |lower than a
job at the top of a stack, then push thisjob
Into that stack.

Pop ajob from the stack when compl eted

A picture of the algorithm

~N W N
O1 N
AN

M1 M2 Mm

AALR 1s O(logP)-competitive

0™°(t) :total #of jobsinthe m stacks at timet
AT (t) :#of jobsinthe pool at timet

F ()= 1 g~st)dt- | 5e(t)dt

Prove the bound separately for jobs in the stacks
and in the pool.

~or jobsinthepool: | *7(t)dt=O(logP) ™
oroved similarly to SRPT

Jobs in the Machine’ s Stacks:

[oMes(t)dt=O(log P) F ™'

t=0

e Jobsinastack arein astrictly decreasing
class order

o At most O(log P) jobsin astack at any
timet

[ges(t)dt< [y (t)log Pdt =

t=>0

logP [y(t)dt =logP} pi <

t>0 i0J

Iog PFOPT

Non-preemptive Algorithms

* Q(n) -competitive lower bound
 NP-hard for m=1 [JK. Lenstra77]

«@(~/n) approximation for m=1
~ [Kellerer, Tauthenam, Woeginger, 96]
. E)(\/n/rﬁ approximation for m machines
[Leonardi, Raz, 97]

« Q(n"°) approximation lower bound for m
machinesif P # NP [Leonardi, Raz, 97]

Non-preemptive approximation

Theorem 1 [LR97] From preemptivec
approximation to acO (m non-preemptive
approximation

Corollary 2 There exists an Ol\/n) approxi-
mation for a single machine.

Corollary 3 Thereexistsan O {Jn/mlogvn]
approximation for parallel machines

How to remove preemptions

Notation for preemptive solution:
- S’ : starting time
—C'2S+p . completion time
— FP = ZF" ZCp—r : total flow time

Non- preemptlve solution:

C =S+
Remove preemption in

D

0Ig |

obs expensive

The Algorithm for m=1

Big and Small jobs:

L I P
e Bigjobs: B—{J.szﬁ}

» Small jobs S:{j:F_qu}

 Atmost /n big jobs

Algorithm for Small jobs

» Schedule small jobsinorder of S

I: p
e S <SP+ since
J J /n
P
S < max {S.".+F.P}g SP 4
J j"sp<Ssf J J J /N

P

‘ |F—Fp|8sn(F

ﬁj:\ﬁ:p

Algorithm for Big jobs

For abigjob |, partition timet=r, into
intervals with p, unitsof idletime,

Between the first./n such intervals there
exists an interval | with at most+/n jobs.

Schedule job j at the beginning of interval |

Shift ahead the at most /n jobs scheduled
in|

Big jobs. Analysis.

1. Bigjob | delayed by P, idletime units
for each interval before |
|F-F°l,<</nY p,
2. Bigjobj delayed by at most Y. P
J
|F-F°,<</nY p,

3. At most\mjobsininterval | delayed by P,
|F-F°l,s</nY p

i0B

Weighted Flow Time
min>w F?=>w (CP-r,)

i0J j0J

*O(log? P)- competitive algorithm for m=1.

w 1/4°

. Q in iwv L 0 R p—p—
lower botind for m>1 /
[Chekuri, Khanna, Zhu, 2001]

e O(k) —comp for k weight classes
[Bansal, Dhamdere, 2003]

Measure Quality of Service and
System'’s Load

Average Stretch:

1 1 Ci—rj

_ S =
Measure of the load of the system
It Is not affected from long jobs

Measure user’ s service degradation with
respect to an unloaded system

Results for minimizing average
stretch

e SRPT isO(1) competitive for m=1 and
m>1. [Muthukrishnan, Rajaraman, Shaheen,
Gehrke, 1999]

e AALRIsO(1) on m>1 competitive without

Job migration [Becchetti, Leonardi,
Muthukrishnan, 2000]

Open Problems

 Two maor open problems:

— O(1) approximation for preemptive flow time
on parallel machines

— O(1) approximation for weighted flow time on
a single machine

