Travel Times and Flows in Stochastic Networks

- Tandem Network (Motivating Example)
- Poisson Functionals of Markov Processes
- Palm Probabilities of Markov Processes
- MUSTA for Jackson Networks
- Travel Times on Overtake-Free Route

Tandem Network

Assumptions:

- Poisson arrivals with rate λ .
- Single-server nodes with exponential services rate μ_i .

Properties of Network in Equilibrium

- Departures at each node form Poisson process with rate λ . (Burke-Reich)
- Moving units see time average (MUSTA) (Palm Probabilities)
- Sojourn time at each node j is exponential with rate $\mu_j \lambda$.
- Sojourn times at nodes are independent.
- The total number of units Z in network has $P\{Z=n\} = \prod_{j=1}^{m} (1-\rho_j) \sum_{i=1}^{m} \rho_i^{n+m-1} \prod_{\ell \neq i} (\rho_i \rho_\ell)^{-1},$ when $\rho_j = \lambda/\mu_j$ are distinct.
- The sojourn time W when $Z \geq b$ has mean

$$EW = P\{Z > b\}/\lambda P\{Z = b\}.$$

Poisson Functionals of Markov Processes

Consider ergodic Markov process $\{X_t : t \in \mathbb{R}\}$ on \mathbb{E} with transition rates q(x, y), stationary distribution π , and transition times

$$\ldots < \tau_{-2} < \tau_{-1} < \tau_0 \le 0 < \tau_1 < \tau_2 < \ldots$$

A \mathcal{T} -transition happens at τ_n when

$$(X_{\tau_n-}, X_{\tau_n}) \in \mathcal{T} \subset \mathbb{E}^2$$
.

Consider point process

 $N(A) = \# \text{ of } \mathcal{T}\text{-transitions in time set } A \subset \mathbb{R}.$

When is N a Poisson process?

By Levy formula, we know

$$EN(A) = \int_A E\alpha(X_t) dt,$$

where

$$\alpha(x) = \sum_{y} q(x, y) \mathbb{1}((x, y) \in \mathcal{T}).$$

This is "conditional intensity" of N given X_t

$$E[N(t, t + dt]|X_t] = \alpha(X_t) dt.$$

Characterization of Poisson Functionals

Define

 $N_{+} \perp X_{-} \equiv future \ of \ N \ independent \ of \ past \ of \ X$ when

$$\{N(A): A \subset (t, \infty)\} \perp \{X_s: s \leq t\}, \quad t \in \mathbb{R}.$$

Theorem 1 The N is Poisson process with rate a and $N_+ \perp X_-$ if and only if

$$\alpha(x) \equiv \sum_{y} q(x, y) 1((x, y) \in \mathcal{T}) = a, \quad x \in \mathbb{E}.$$
 (1)

Proof by Watanabe martingale characterization of Poisson processes.

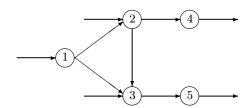
Theorem 2 Suppose X_t is stationary. The N is Poisson process with rate a and $N_- \perp X_+$ if and only if

$$\bar{\alpha}(x) = \pi(x)^{-1} \sum_{y} \pi(y) q(y, x) 1((y, x) \in \mathcal{T}) = a, \quad x \in \mathbb{E}.$$

Proof by time reversibility and preceding theorem.

Results extend to multivariate compound Poisson processes.

Examples of Poisson Functionals



Open Acyclic Jackson Network

Consider

 $N_{jk}(a,b]$) = # units moving from j to k in (a,b]. This is Poisson process with rate $w_j \lambda_{jk}$.

Also,

$$N_{12} \perp N_{13}, \qquad N_{23} \perp N_{24}, \qquad N_{40} \perp N_{50},$$
 $N_{12} \not\perp N_{24}, \qquad N_{23} \not\perp N_{50}.$

Palm Probabilities for M/M/1 System

Suppose X_t is number of units in M/M/1 queueing system with arrival rate λ and service rate μ . In equilibrium, the "conditional" probability that an arrival at time 0 sees x units in the system is

$$P_N\{X_0 = x+1\} = \lim_{s \uparrow 0} P\{X_0 = x+1 | X_0 = X_s+1\}$$

= $\pi(x)$.

Poisson arrivals see time averages (PASTA).

The P_N is the Palm probability of the point process N of arrivals to the system, where there is an arrival at time 0 with probability 1.

Furthermore, if W is the sojourn time of a unit arriving at time 0, then

$$P_N\{W \le t\} = \lim_{s \uparrow 0} P\{W \le t | X_0 = X_s + 1\}$$

= $1 - e^{-(\mu - \lambda)t}$.

Is there a general formula for Palm probabilities of stationary Markov processes?

Palm Probabilities for Markov Processes

Consider stationary Markov process $\{X_t : t \in \mathbb{R}\}$ on \mathbb{E} with transition rates q(x,y), stationary distribution π , and transition times

$$\ldots < \tau_{-2} < \tau_{-1} < \tau_0 \le 0 < \tau_1 < \tau_2 < \ldots$$

Suppose \mathcal{T} is a subset of sample paths of X.

A \mathcal{T} -transition occurs at τ_n if

$$S_{\tau_n}X = \{X_{t+\tau_n} : t \in \mathbb{R}\} \in \mathcal{T}.$$

Consider point process

N(A) = number of \mathcal{T} -transitions of X in time set $A \subset \mathbb{R}$.

The N is a stationary point process (its distribution is invariant under time shifts), and its intensity is

$$\lambda_{\mathcal{T}} = EN(0,1] = \sum_{x} \pi(x) \sum_{y \neq x} q(x,y) P\{S_{\tau_1} X \in \mathcal{T} | X_{\tau_0} = x, X_{\tau_1} = y\}.$$

The Palm probability P_N of the stationary Markov process X given that a \mathcal{T} -transition occurs at time 0 is

$$P_N\{X \in \mathcal{T}'\} = \lambda_{\mathcal{T}'}/\lambda_{\mathcal{T}}, \quad \mathcal{T}' \subset \mathcal{T}.$$

Clearly $P_N\{X \in \mathcal{T}\} = 1$: a \mathcal{T} -transition "occurs at 0".

MUSTA for Jackson Processes

Suppose X_t is a stationary Jackson network process. Consider a \mathcal{T} -transition in which one unit moves from node j to node k. Let \tilde{X}_t denote the vector of the unmoved units at the transition.

If the network is open with unlimited capacity, then

$$P_N\{\tilde{X}_0 = x\} = \pi(x).$$

If the network is closed with ν units (or open with capacity ν), then

$$P_N\{\tilde{X}_0 = x\} = \pi_{\nu-1}(x),$$

the distribution of the network with $\nu-1$ units.

Travel Times on Overtake-Free Routes in a Jackson Network

Suppose X_t is stationary Jackson network process. Consider an *overtake-free* route $r = (r_1, \ldots, r_\ell)$:

- Each node j is single server with rate μ_j and FIFO discipline.
- Routing is such that a unit cannot overtake another one.

Let P_{r_1} denote the Palm probability of a network transition in which a unit enters node r_1 at time 0 and traverses the route r.

Let $W_{r_1}, \ldots, W_{r_\ell}$ denote sojourn times at nodes on the route for that unit.

Theorem 3 (Open Network, Unlimited)

The $W_{r_1}, \ldots, W_{r_\ell}$ "under the Palm probability P_{r_1} " are independent exponential random variables with rates $\mu_{r_1} - w_{r_1}, \ldots, \mu_{r_\ell} - w_{r_\ell}$.

Travel Times on Overtake-Free Routes in a Jackson Network

Theorem 4 (Closed Network with ν Units)

For t_1, \ldots, t_ℓ in \mathbb{R} ,

$$P_{r_1}\{W_{r_1} \le t_1, \dots, W_{r_{\ell}} \le t_{\ell}\}$$

$$= \sum_{x \in \mathbb{E}'} \pi_{\nu-1}(x) \prod_{i=1}^{\ell} F(t_i | \mu_{r_i}, x_{r_i} + 1).$$

Here $F(t|\mu, n)$ is the Erlang distribution with parameters μ and n. Its density is

$$\frac{dF(t|\mu, n)}{dt} = \mu(\mu t)^{n-1} e^{-\mu t} / (n-1)!, \quad t \ge 0.$$

Same theorem applies to a ν -capacity open network.