Travel Times and Flows in
Stochastic Networks

e Tandem Network (Motivating Example)
e Poisson Functionals of Markov Processes
e Palm Probabilities of Markov Processes

e MUSTA for Jackson Networks

e Travel Times on Overtake-Free Route



Tandem Network
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Assumptions:

e Poisson arrivals with rate \.

e Single-server nodes with exponential services rate p;.

Properties of Network in Equilibrium

e Departures at each node form Poisson process with
rate A. (Burke-Reich)

e Moving units see time average (MUSTA)
(Palm Probabilities)

e Sojourn time at each node j is exponential with rate
pj = A

e Sojourn times at nodes are independent.

e The total number of units Z in network has
m

P{Z =n}= jgl(l — pj) gil ppm Egi(m —po)

when p; = A\/p; are distinct.
e The sojourn time W when Z > b has mean
EW = P{Z > b}/\P{Z = b}.



Poisson Functionals of Markov Processes

Consider ergodic Markov process {X; : ¢ € IR} on IE
with transition rates q(x, y), stationary distribution 7, and
transition times

< Toa<TH<<0<nn<n<...
A T -transition happens at 7,, when
(X, -, X,,) €T CIE~
Consider point process
N(A) = # of T-transitions in time set A C IR.

When is N a Poisson process?

By Levy formula, we know
EN(A) = [, Ea(Xy) dt,

where
Oé(fl?) — Zy:Q(xa y)l((fb, y) S T)

This is “conditional intensity” of N given X;

E[N(t,t + dt]|X)] = (X)) dt.



Characterization of Poisson Functionals

Define
N, 1L X_ = future of N independent of past of X

when

{N(A): AC (t,0)} L{X;:5s<t}, telR.

Theorem 1 The N s Poisson process with rate a and
N, 1L X_ if and only if

a(r) = %q(w,y)l((az,y) eET)=a, z€lE (1)

Proof by Watanabe martingale characterization of Poisson
processes.

Theorem 2 Suppose X; is stationary. The N is Pois-
son process with rate a and N_ 1 X, if and only if

a(z) = m(z)™ Yr(y)aly 2)(y,2) € T) =a, weIL.

Proof by time reversibility and preceding theorem.

Results extend to multivariate compound Poisson processes.

4



Examples of Poisson Functionals
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Open Acyclic Jackson Network

Consider
Nji(a,b]) = # units moving from j to k in (a, b|.

This is Poisson process with rate w;A;z.

Also,
Nig L Ny, Nos L Ny, Nyg L Ns,

Nigs [ Ny, Nas £ Ns.



Palm Probabilities for M /M /1 System

Suppose X is number of units in M /M /1 queueing sys-
tem with arrival rate A and service rate p. In equilibrium,
the “conditioinal” probability that an arrival at time 0 sees
x units in the system is

= 7(x).

Poisson arrivals see time averages (PASTA).

The Py is the Palm probability of the point process N
of arrivals to the system, where there is an arrival at time
0 with probability 1.

Furthermore, if W is the sojourn time of a unit arriving
at time 0, then

PN{W < t} = h{gP{W < t‘X() :XS—I-l}

— 1 —e WV

Is there a general formula for Palm probabilities of sta-
tionary Markov processes?



Palm Probabilities for Markov Processes

Consider stationary Markov process {X; : t € IR} on
[E with transition rates q(x, y), stationary distribution ,
and transition times

< To<TA<TH <0< <nm<...

Suppose T is a subset of sample paths of X.
A T -transition occurs at 7, if

STnX = {Xt+7—n 1€ ]:R,} € T
Consider point process
N(A) = number of T-transitions of X in time set A C IR.

The N is a stationary point process (its distribution is
invariant under time shifts), and its intensity is

A = EN(0,1]
= > m(z) § Q($79>P{ST1X = T‘XTO =, X7 = y}
x Y+

The Palm probability Py of the stationary Markov process
X given that a T -transition occurs at time 0 is

PN{X c Tl} = )\7'//)\7', T CT.
Clearly Py{X € T} = 1: a T-transition “occurs at 0”.



MUSTA for Jackson Processes

Suppose X; is a stationary Jackson network process.
Consider a T -transition in which one unit moves from node
jtonode k. Let X; denote the vector of the unmoved units
at the transition.

If the network is open with unlimited capacity, then

PN{XO =z} =n(x).

If the network is closed with v units (or open with ca-
pacity v), then

Py{Xy =z} =m,_1(2),

the distribution of the network with v — 1 units.



Travel Times on Overtake-Free Routes
in a Jackson Network

Suppose X; is stationary Jackson network process. Con-
sider an overtake—free route r = (ry,...,ry):

e Fach node j is single server with rate p; and FIFO
discipline.

e Routing is such that a unit cannot overtake another
one.

Let P, denote the Palm probability of a network transi-
tion in which a unit enters node r; at time 0 and traverses
the route r.

Let W, ,..., W,, denote sojourn times at nodes on the
route for that unit.

Theorem 3 (Open Network, Unlimited)
The Wy, ..., W,, “under the Palm probability P, ” are
independent exponential random wvariables with rates

Mry — Wryy ooy fopy — Wy



Travel Times on Overtake-Free Routes
in a Jackson Network

Theorem 4 (Closed Network with v Units)
Forty,...,t; in IR,

P’r’l{w’r’l < tl; SRR W’r’g < tf}
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= > Wu—l(x) _1:[1 F(ti\ﬂw% + 1)'

z€IE/

Here F(t|p,n) is the Erlang distribution with parame-
ters p and n. Its density is
dE(t|p,m)
dt

= p(pt)" e M /(n—1), t>0.

Same theorem applies to a v-capacity open network.
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